{"title":"Durgapal-Fuloria玻色-爱因斯坦凝聚星在f(R,T)引力理论","authors":"Meghanil Sinha, S. Surendra Singh","doi":"10.1016/j.jheap.2025.100486","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript studies the Bose-Einstein condensate (BEC) stars in the light of <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravity here with Durgapal-Fuloria (DP) metric ansatz. The function under this study features as <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo><mo>=</mo><mi>R</mi><mo>+</mo><mn>2</mn><mi>η</mi><mi>T</mi></math></span>, where <em>η</em> represents the coupling constant. With the help of it, we have formulated a stellar model describing the isotropic matter here within. Our analysis covers energy conditions, equation of state (EoS) parameter and gradients of the energy-momentum tensor components for a valid BEC stellar framework within <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravitational theory with satisfactory results. The model's stability has been validated via multiple stability criteria viz., the velocity of sound, study of adiabatic index and surface redshift where all are found to be lying within the acceptable range for our stellar model. Thus in all the cases we have found our model to be stable and realistic. From the graphical representations the impact of the coupling constant and the parameter of the DP metric potential are clearly visible. Thus we can state that with all the above-mentioned features we have introduced new stellar solutions for BEC stars with enhanced precise results in this modified gravity.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"50 ","pages":"Article 100486"},"PeriodicalIF":10.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Durgapal-Fuloria Bose-Einstein condensate stars within f(R,T) gravity theory\",\"authors\":\"Meghanil Sinha, S. Surendra Singh\",\"doi\":\"10.1016/j.jheap.2025.100486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript studies the Bose-Einstein condensate (BEC) stars in the light of <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravity here with Durgapal-Fuloria (DP) metric ansatz. The function under this study features as <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo><mo>=</mo><mi>R</mi><mo>+</mo><mn>2</mn><mi>η</mi><mi>T</mi></math></span>, where <em>η</em> represents the coupling constant. With the help of it, we have formulated a stellar model describing the isotropic matter here within. Our analysis covers energy conditions, equation of state (EoS) parameter and gradients of the energy-momentum tensor components for a valid BEC stellar framework within <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravitational theory with satisfactory results. The model's stability has been validated via multiple stability criteria viz., the velocity of sound, study of adiabatic index and surface redshift where all are found to be lying within the acceptable range for our stellar model. Thus in all the cases we have found our model to be stable and realistic. From the graphical representations the impact of the coupling constant and the parameter of the DP metric potential are clearly visible. Thus we can state that with all the above-mentioned features we have introduced new stellar solutions for BEC stars with enhanced precise results in this modified gravity.</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"50 \",\"pages\":\"Article 100486\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404825001673\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825001673","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Durgapal-Fuloria Bose-Einstein condensate stars within f(R,T) gravity theory
This manuscript studies the Bose-Einstein condensate (BEC) stars in the light of gravity here with Durgapal-Fuloria (DP) metric ansatz. The function under this study features as , where η represents the coupling constant. With the help of it, we have formulated a stellar model describing the isotropic matter here within. Our analysis covers energy conditions, equation of state (EoS) parameter and gradients of the energy-momentum tensor components for a valid BEC stellar framework within gravitational theory with satisfactory results. The model's stability has been validated via multiple stability criteria viz., the velocity of sound, study of adiabatic index and surface redshift where all are found to be lying within the acceptable range for our stellar model. Thus in all the cases we have found our model to be stable and realistic. From the graphical representations the impact of the coupling constant and the parameter of the DP metric potential are clearly visible. Thus we can state that with all the above-mentioned features we have introduced new stellar solutions for BEC stars with enhanced precise results in this modified gravity.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.