{"title":"边缘云资源高效异常检测的强化模型选择","authors":"Javad Forough, Monowar Bhuyan, Erik Elmroth","doi":"10.1016/j.future.2025.108161","DOIUrl":null,"url":null,"abstract":"<div><div>Web application services and networks encounter a broad range of security and performance anomalies, necessitating sophisticated detection strategies. However, performing anomaly detection in edge cloud environments, often constrained by limited resources, presents significant computational challenges and demands minimized detection time for real-time response. In this paper, we propose a model selection approach for resource efficient anomaly detection in edge clouds by leveraging an adapted Deep Q-Network (DQN) reinforcement learning technique. The primary objective is to minimize the computational resources required for accurate anomaly detection while achieving low latency and high detection accuracy. Through extensive experimental evaluation in our testbed setup over different representative scenarios, we demonstrate that our adapted DQN approach can reduce resource usage by up to 45 % and detection time by up to 85 % while incurring less than an 8 % drop in F1 score. These results highlight the potential of the adapted DQN model selection strategy to enable efficient, low-latency anomaly detection in resource-constrained edge cloud environments.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"176 ","pages":"Article 108161"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforced model selection for resource efficient anomaly detection in edge clouds\",\"authors\":\"Javad Forough, Monowar Bhuyan, Erik Elmroth\",\"doi\":\"10.1016/j.future.2025.108161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Web application services and networks encounter a broad range of security and performance anomalies, necessitating sophisticated detection strategies. However, performing anomaly detection in edge cloud environments, often constrained by limited resources, presents significant computational challenges and demands minimized detection time for real-time response. In this paper, we propose a model selection approach for resource efficient anomaly detection in edge clouds by leveraging an adapted Deep Q-Network (DQN) reinforcement learning technique. The primary objective is to minimize the computational resources required for accurate anomaly detection while achieving low latency and high detection accuracy. Through extensive experimental evaluation in our testbed setup over different representative scenarios, we demonstrate that our adapted DQN approach can reduce resource usage by up to 45 % and detection time by up to 85 % while incurring less than an 8 % drop in F1 score. These results highlight the potential of the adapted DQN model selection strategy to enable efficient, low-latency anomaly detection in resource-constrained edge cloud environments.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"176 \",\"pages\":\"Article 108161\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X25004558\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25004558","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Reinforced model selection for resource efficient anomaly detection in edge clouds
Web application services and networks encounter a broad range of security and performance anomalies, necessitating sophisticated detection strategies. However, performing anomaly detection in edge cloud environments, often constrained by limited resources, presents significant computational challenges and demands minimized detection time for real-time response. In this paper, we propose a model selection approach for resource efficient anomaly detection in edge clouds by leveraging an adapted Deep Q-Network (DQN) reinforcement learning technique. The primary objective is to minimize the computational resources required for accurate anomaly detection while achieving low latency and high detection accuracy. Through extensive experimental evaluation in our testbed setup over different representative scenarios, we demonstrate that our adapted DQN approach can reduce resource usage by up to 45 % and detection time by up to 85 % while incurring less than an 8 % drop in F1 score. These results highlight the potential of the adapted DQN model selection strategy to enable efficient, low-latency anomaly detection in resource-constrained edge cloud environments.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.