边缘云资源高效异常检测的强化模型选择

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Javad Forough, Monowar Bhuyan, Erik Elmroth
{"title":"边缘云资源高效异常检测的强化模型选择","authors":"Javad Forough,&nbsp;Monowar Bhuyan,&nbsp;Erik Elmroth","doi":"10.1016/j.future.2025.108161","DOIUrl":null,"url":null,"abstract":"<div><div>Web application services and networks encounter a broad range of security and performance anomalies, necessitating sophisticated detection strategies. However, performing anomaly detection in edge cloud environments, often constrained by limited resources, presents significant computational challenges and demands minimized detection time for real-time response. In this paper, we propose a model selection approach for resource efficient anomaly detection in edge clouds by leveraging an adapted Deep Q-Network (DQN) reinforcement learning technique. The primary objective is to minimize the computational resources required for accurate anomaly detection while achieving low latency and high detection accuracy. Through extensive experimental evaluation in our testbed setup over different representative scenarios, we demonstrate that our adapted DQN approach can reduce resource usage by up to 45 % and detection time by up to 85 % while incurring less than an 8 % drop in F1 score. These results highlight the potential of the adapted DQN model selection strategy to enable efficient, low-latency anomaly detection in resource-constrained edge cloud environments.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"176 ","pages":"Article 108161"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforced model selection for resource efficient anomaly detection in edge clouds\",\"authors\":\"Javad Forough,&nbsp;Monowar Bhuyan,&nbsp;Erik Elmroth\",\"doi\":\"10.1016/j.future.2025.108161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Web application services and networks encounter a broad range of security and performance anomalies, necessitating sophisticated detection strategies. However, performing anomaly detection in edge cloud environments, often constrained by limited resources, presents significant computational challenges and demands minimized detection time for real-time response. In this paper, we propose a model selection approach for resource efficient anomaly detection in edge clouds by leveraging an adapted Deep Q-Network (DQN) reinforcement learning technique. The primary objective is to minimize the computational resources required for accurate anomaly detection while achieving low latency and high detection accuracy. Through extensive experimental evaluation in our testbed setup over different representative scenarios, we demonstrate that our adapted DQN approach can reduce resource usage by up to 45 % and detection time by up to 85 % while incurring less than an 8 % drop in F1 score. These results highlight the potential of the adapted DQN model selection strategy to enable efficient, low-latency anomaly detection in resource-constrained edge cloud environments.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"176 \",\"pages\":\"Article 108161\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X25004558\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25004558","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Web应用程序服务和网络会遇到各种各样的安全和性能异常,因此需要复杂的检测策略。然而,在边缘云环境中执行异常检测,通常受到有限资源的限制,提出了重大的计算挑战,并且需要最小化实时响应的检测时间。在本文中,我们提出了一种模型选择方法,利用自适应深度q -网络(DQN)强化学习技术,在边缘云中进行资源高效的异常检测。主要目标是在实现低延迟和高检测精度的同时,最大限度地减少准确异常检测所需的计算资源。通过在不同代表性场景的测试平台设置中进行广泛的实验评估,我们证明了我们的适应性DQN方法可以减少高达45%的资源使用和高达85%的检测时间,同时导致F1分数下降不到8%。这些结果突出了自适应DQN模型选择策略的潜力,可以在资源受限的边缘云环境中实现高效、低延迟的异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforced model selection for resource efficient anomaly detection in edge clouds
Web application services and networks encounter a broad range of security and performance anomalies, necessitating sophisticated detection strategies. However, performing anomaly detection in edge cloud environments, often constrained by limited resources, presents significant computational challenges and demands minimized detection time for real-time response. In this paper, we propose a model selection approach for resource efficient anomaly detection in edge clouds by leveraging an adapted Deep Q-Network (DQN) reinforcement learning technique. The primary objective is to minimize the computational resources required for accurate anomaly detection while achieving low latency and high detection accuracy. Through extensive experimental evaluation in our testbed setup over different representative scenarios, we demonstrate that our adapted DQN approach can reduce resource usage by up to 45 % and detection time by up to 85 % while incurring less than an 8 % drop in F1 score. These results highlight the potential of the adapted DQN model selection strategy to enable efficient, low-latency anomaly detection in resource-constrained edge cloud environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信