基于高动态范围成像和多辅助支路协调关注的轻量化视觉变压器网络对锁孔钨惰性气焊双角磁弧熔断进行估计

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xiyin Chen , Xiaohu Zhang , Yonghua Shi , Yuxiang Huang , Junjie Pang
{"title":"基于高动态范围成像和多辅助支路协调关注的轻量化视觉变压器网络对锁孔钨惰性气焊双角磁弧熔断进行估计","authors":"Xiyin Chen ,&nbsp;Xiaohu Zhang ,&nbsp;Yonghua Shi ,&nbsp;Yuxiang Huang ,&nbsp;Junjie Pang","doi":"10.1016/j.engappai.2025.112432","DOIUrl":null,"url":null,"abstract":"<div><div>In high current Keyhole Tungsten Inert Gas (K-TIG) welding, magnetic arc blow frequently causes severe defects such as lack of fusion and undercut, which seriously affect weld formation quality. Conventional visual sensing systems are limited by dynamic range, making it difficult to capture arc morphology, while single angle descriptors fail to represent nonlinear deflection and lightweight convolutional models struggle with long range dependencies. To address these challenges, this study employs a High Dynamic Range (HDR, 120 decibel [dB]) imaging system to capture detailed arc variations and proposes a lightweight Vision Transformer (ViT) network with embedded Coordinate Attention (CA) and multiple auxiliary branches for real time angle estimation. A custom magnetic excitation system enables controllable arc blow simulation and consistent data acquisition. The method introduces a dual angle representation, namely the maximum curvature angle (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>curv</mi></mrow></msub></math></span>) and the equivalent deviation angle (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>eq</mi></mrow></msub></math></span>), to comprehensively describe arc geometry. The Artificial Intelligence (AI) framework integrates segmentation, keypoint localization, and regression tasks to improve accuracy and robustness. Trained on a self constructed HDR dataset containing 3,191 annotated images, model achieves a mean absolute error (MAE) of <span><math><mrow><mn>1</mn><mo>.</mo><mn>12</mn><mo>°</mo></mrow></math></span>, a root mean square error (RMSE) of <span><math><mrow><mn>2</mn><mo>.</mo><mn>84</mn><mo>°</mo></mrow></math></span>, a determination coefficient (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) of 0.96, and a per frame inference latency of 12.96 ms (ms) on an NVIDIA RTX 2080Ti graphics processing unit (GPU). These results demonstrate that AI based methods combined with HDR imaging cannot only achieve accurate monitoring of welding arc states, but also provide potential support for closed loop control in all position welding applications.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"162 ","pages":"Article 112432"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual angle magnetic arc blow estimation in keyhole tungsten inert gas welding using high dynamic range imaging and a lightweight vision transformer network with coordinate attention and multiple auxiliary branches\",\"authors\":\"Xiyin Chen ,&nbsp;Xiaohu Zhang ,&nbsp;Yonghua Shi ,&nbsp;Yuxiang Huang ,&nbsp;Junjie Pang\",\"doi\":\"10.1016/j.engappai.2025.112432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In high current Keyhole Tungsten Inert Gas (K-TIG) welding, magnetic arc blow frequently causes severe defects such as lack of fusion and undercut, which seriously affect weld formation quality. Conventional visual sensing systems are limited by dynamic range, making it difficult to capture arc morphology, while single angle descriptors fail to represent nonlinear deflection and lightweight convolutional models struggle with long range dependencies. To address these challenges, this study employs a High Dynamic Range (HDR, 120 decibel [dB]) imaging system to capture detailed arc variations and proposes a lightweight Vision Transformer (ViT) network with embedded Coordinate Attention (CA) and multiple auxiliary branches for real time angle estimation. A custom magnetic excitation system enables controllable arc blow simulation and consistent data acquisition. The method introduces a dual angle representation, namely the maximum curvature angle (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>curv</mi></mrow></msub></math></span>) and the equivalent deviation angle (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>eq</mi></mrow></msub></math></span>), to comprehensively describe arc geometry. The Artificial Intelligence (AI) framework integrates segmentation, keypoint localization, and regression tasks to improve accuracy and robustness. Trained on a self constructed HDR dataset containing 3,191 annotated images, model achieves a mean absolute error (MAE) of <span><math><mrow><mn>1</mn><mo>.</mo><mn>12</mn><mo>°</mo></mrow></math></span>, a root mean square error (RMSE) of <span><math><mrow><mn>2</mn><mo>.</mo><mn>84</mn><mo>°</mo></mrow></math></span>, a determination coefficient (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) of 0.96, and a per frame inference latency of 12.96 ms (ms) on an NVIDIA RTX 2080Ti graphics processing unit (GPU). These results demonstrate that AI based methods combined with HDR imaging cannot only achieve accurate monitoring of welding arc states, but also provide potential support for closed loop control in all position welding applications.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"162 \",\"pages\":\"Article 112432\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625024637\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625024637","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在大电流Keyhole Tungsten Inert Gas (K-TIG)焊接中,磁弧吹焊经常会造成严重的熔合不良和咬边等缺陷,严重影响焊缝成形质量。传统的视觉传感系统受到动态范围的限制,难以捕捉电弧形态,而单角度描述符无法表示非线性偏转,轻量级卷积模型难以满足长距离依赖。为了应对这些挑战,本研究采用了高动态范围(HDR, 120分贝[dB])成像系统来捕获详细的电弧变化,并提出了一种轻量级视觉变压器(ViT)网络,该网络具有嵌入式坐标注意(CA)和多个辅助分支,用于实时角度估计。一个定制的磁激励系统,使可控的电弧吹模拟和一致的数据采集。该方法引入了最大曲率角(θcurv)和等效偏差角(θeq)的对角表示,以全面描述圆弧几何。人工智能(AI)框架集成了分割、关键点定位和回归任务,以提高准确性和鲁棒性。在NVIDIA RTX 2080Ti图形处理单元(GPU)上,模型的平均绝对误差(MAE)为1.12°,均方根误差(RMSE)为2.84°,决定系数(R2)为0.96,每帧推理延迟为12.96 ms (ms)。这些结果表明,基于人工智能的方法与HDR成像相结合,不仅可以实现焊接电弧状态的精确监测,而且可以为全位置焊接应用的闭环控制提供潜在的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual angle magnetic arc blow estimation in keyhole tungsten inert gas welding using high dynamic range imaging and a lightweight vision transformer network with coordinate attention and multiple auxiliary branches
In high current Keyhole Tungsten Inert Gas (K-TIG) welding, magnetic arc blow frequently causes severe defects such as lack of fusion and undercut, which seriously affect weld formation quality. Conventional visual sensing systems are limited by dynamic range, making it difficult to capture arc morphology, while single angle descriptors fail to represent nonlinear deflection and lightweight convolutional models struggle with long range dependencies. To address these challenges, this study employs a High Dynamic Range (HDR, 120 decibel [dB]) imaging system to capture detailed arc variations and proposes a lightweight Vision Transformer (ViT) network with embedded Coordinate Attention (CA) and multiple auxiliary branches for real time angle estimation. A custom magnetic excitation system enables controllable arc blow simulation and consistent data acquisition. The method introduces a dual angle representation, namely the maximum curvature angle (θcurv) and the equivalent deviation angle (θeq), to comprehensively describe arc geometry. The Artificial Intelligence (AI) framework integrates segmentation, keypoint localization, and regression tasks to improve accuracy and robustness. Trained on a self constructed HDR dataset containing 3,191 annotated images, model achieves a mean absolute error (MAE) of 1.12°, a root mean square error (RMSE) of 2.84°, a determination coefficient (R2) of 0.96, and a per frame inference latency of 12.96 ms (ms) on an NVIDIA RTX 2080Ti graphics processing unit (GPU). These results demonstrate that AI based methods combined with HDR imaging cannot only achieve accurate monitoring of welding arc states, but also provide potential support for closed loop control in all position welding applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信