Naomi Tucker , Samantha March , Martin Hand , Mitchell Bockmann , Patrick Kolesik
{"title":"热南极地壳中元古代快速盆地形成的自生钛矿约束","authors":"Naomi Tucker , Samantha March , Martin Hand , Mitchell Bockmann , Patrick Kolesik","doi":"10.1016/j.precamres.2025.107928","DOIUrl":null,"url":null,"abstract":"<div><div>Geochronological data from detrital zircon, two generations of titanite, and authigenic sericite in glacial erratics transported to the Bunger Hills provide new insights into a deep subglacial basin in East Antarctica. Basin formation occurred during the late Mesoproterozoic, with diagenesis coinciding with granulite facies metamorphism in the underlying basement rocks. In line with previous studies, we interpret this basin to have formed as a rift sequence, but we extend this model by proposing that rifting was directly associated with Mesoproterozoic orogenesis, and that upper crustal extension was coupled with mid–lower-crustal ductile flow. The basin detritus was primarily sourced from a felsic magmatic-rich carapace emplaced at ca. 1180–1160 Ma. The authigenic mineralogy of the erratics, supported by chlorite thermometry and authigenic titanite geochronology, suggests that within the ensuing ca. 50–70 million years, the detritus was buried deeply and subjected to low-grade metamorphism (∼300 °C). Sericite ages complement the zircon and titanite dataset and reveal that the basin was largely unaffected by Cambrian tectonism, meaning that it was situated in thermomechanically stable crust and geographically distant to the major Gondwanan Indo–Australo–Antarctic suture. This study demonstrates the utility of coupled authigenic and detrital mineral geochronology in constraining sedimentary basin formation ages, and linking deep-crustal and near-surface processes.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"430 ","pages":"Article 107928"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Authigenic titanite constraints on fast Mesoproterozoic basin formation in hot Antarctic crust\",\"authors\":\"Naomi Tucker , Samantha March , Martin Hand , Mitchell Bockmann , Patrick Kolesik\",\"doi\":\"10.1016/j.precamres.2025.107928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Geochronological data from detrital zircon, two generations of titanite, and authigenic sericite in glacial erratics transported to the Bunger Hills provide new insights into a deep subglacial basin in East Antarctica. Basin formation occurred during the late Mesoproterozoic, with diagenesis coinciding with granulite facies metamorphism in the underlying basement rocks. In line with previous studies, we interpret this basin to have formed as a rift sequence, but we extend this model by proposing that rifting was directly associated with Mesoproterozoic orogenesis, and that upper crustal extension was coupled with mid–lower-crustal ductile flow. The basin detritus was primarily sourced from a felsic magmatic-rich carapace emplaced at ca. 1180–1160 Ma. The authigenic mineralogy of the erratics, supported by chlorite thermometry and authigenic titanite geochronology, suggests that within the ensuing ca. 50–70 million years, the detritus was buried deeply and subjected to low-grade metamorphism (∼300 °C). Sericite ages complement the zircon and titanite dataset and reveal that the basin was largely unaffected by Cambrian tectonism, meaning that it was situated in thermomechanically stable crust and geographically distant to the major Gondwanan Indo–Australo–Antarctic suture. This study demonstrates the utility of coupled authigenic and detrital mineral geochronology in constraining sedimentary basin formation ages, and linking deep-crustal and near-surface processes.</div></div>\",\"PeriodicalId\":49674,\"journal\":{\"name\":\"Precambrian Research\",\"volume\":\"430 \",\"pages\":\"Article 107928\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precambrian Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301926825002542\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926825002542","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Authigenic titanite constraints on fast Mesoproterozoic basin formation in hot Antarctic crust
Geochronological data from detrital zircon, two generations of titanite, and authigenic sericite in glacial erratics transported to the Bunger Hills provide new insights into a deep subglacial basin in East Antarctica. Basin formation occurred during the late Mesoproterozoic, with diagenesis coinciding with granulite facies metamorphism in the underlying basement rocks. In line with previous studies, we interpret this basin to have formed as a rift sequence, but we extend this model by proposing that rifting was directly associated with Mesoproterozoic orogenesis, and that upper crustal extension was coupled with mid–lower-crustal ductile flow. The basin detritus was primarily sourced from a felsic magmatic-rich carapace emplaced at ca. 1180–1160 Ma. The authigenic mineralogy of the erratics, supported by chlorite thermometry and authigenic titanite geochronology, suggests that within the ensuing ca. 50–70 million years, the detritus was buried deeply and subjected to low-grade metamorphism (∼300 °C). Sericite ages complement the zircon and titanite dataset and reveal that the basin was largely unaffected by Cambrian tectonism, meaning that it was situated in thermomechanically stable crust and geographically distant to the major Gondwanan Indo–Australo–Antarctic suture. This study demonstrates the utility of coupled authigenic and detrital mineral geochronology in constraining sedimentary basin formation ages, and linking deep-crustal and near-surface processes.
期刊介绍:
Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as:
(1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology;
(2) Geochronology and isotope and elemental geochemistry;
(3) Precambrian mineral deposits;
(4) Geophysical aspects of the early Earth and Precambrian terrains;
(5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes.
In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes.
Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.