无硼小型模块化堆芯占空比反应性控制及氙空间振荡稳定性分析

IF 3.2 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Bright Madinka Mweetwa , Marat Margulis
{"title":"无硼小型模块化堆芯占空比反应性控制及氙空间振荡稳定性分析","authors":"Bright Madinka Mweetwa ,&nbsp;Marat Margulis","doi":"10.1016/j.pnucene.2025.106062","DOIUrl":null,"url":null,"abstract":"<div><div>One of the challenges associated with operating a boron-free Small Modular Reactor (BFSMR) is increased use of rod cluster control assemblies (RCCAs) for duty cycle operations and power manoeuver, and burnable poisons for excess reactivity control. Frequent RCCA movement may result in increased xenon spatial oscillations. In this work four LPs with similar thermal output of 1429.51 MW were assessed to determine a candidate LP for the BFSMR core. CASMO4, ROSA and SIMULATE3 were used for fuel assembly modelling, core loading and 3D core simulation and assessment. The LP with 32 feed fuel assemblies and a maximum of 56 <span><math><mrow><msub><mrow><msub><mrow><mi>G</mi><mi>d</mi></mrow><mn>2</mn></msub><mi>O</mi></mrow><mn>3</mn></msub></mrow></math></span> doped fuel pins in a fuel assembly was adopted as the best LP. A RCCA insertion pattern for duty cycle operation of the candidate LP and the power-dependent rod insertion limit (PDIL) for power manoeuver have been established. In addition, free-xenon stability of core and RCCA movement-initiated xenon transient were assessed. The peak linear heat rate (<span><math><mrow><mi>P</mi><mi>L</mi><mi>H</mi><mi>R</mi></mrow></math></span>), enthalpy rise hot channel factor (<span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub><mo>)</mo><mtext>,</mtext></mrow></math></span> and the heat flux hot channel factor (<span><math><mrow><msub><mi>F</mi><mi>q</mi></msub><mo>)</mo><mtext>,</mtext></mrow></math></span> were used as a criterion for acceptance of RCCA insertion pattern at each burnup step and each power level associated with power manoeuver. The target <span><math><mrow><mi>P</mi><mi>L</mi><mi>H</mi><mi>R</mi><mtext>,</mtext></mrow></math></span> <span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub><mtext>,</mtext></mrow></math></span> and <span><math><mrow><msub><mi>F</mi><mi>q</mi></msub></mrow></math></span> were set at 42.12 kW/m, 1.65, and 2.6, respectively. The maximum values for <span><math><mrow><mi>P</mi><mi>L</mi><mi>H</mi><mi>R</mi><mtext>,</mtext></mrow></math></span> <span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub><mtext>,</mtext></mrow></math></span> and <span><math><mrow><msub><mi>F</mi><mi>q</mi></msub></mrow></math></span> associated with the RCCA insertions insertion pattern were found to be 38.2 kW/m, 1.608, and 2.38. The maximum <span><math><mrow><mi>P</mi><mi>L</mi><mi>H</mi><mi>R</mi><mtext>,</mtext></mrow></math></span> <span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub><mtext>,</mtext></mrow></math></span> and <span><math><mrow><msub><mi>F</mi><mi>q</mi></msub></mrow></math></span> values associated with power manoeuver for the power range 80%–100% were found to be 33.01 kW/m, 1.62, and 2.26 respectively. These values were associated with the 8.5 MWd/kg burnup step – a burnup step at which <span><math><mrow><msub><mrow><mi>G</mi><mi>d</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> depleted and the core had the maximum <span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub></mrow></math></span> value. The core was found to be stable with respect to free-xenon oscillations and xenon transients, as respective stability indices were found to be negative.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"191 ","pages":"Article 106062"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duty cycle reactivity control and xenon spatial oscillation stability analysis of a boron-free small modular reactor core\",\"authors\":\"Bright Madinka Mweetwa ,&nbsp;Marat Margulis\",\"doi\":\"10.1016/j.pnucene.2025.106062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the challenges associated with operating a boron-free Small Modular Reactor (BFSMR) is increased use of rod cluster control assemblies (RCCAs) for duty cycle operations and power manoeuver, and burnable poisons for excess reactivity control. Frequent RCCA movement may result in increased xenon spatial oscillations. In this work four LPs with similar thermal output of 1429.51 MW were assessed to determine a candidate LP for the BFSMR core. CASMO4, ROSA and SIMULATE3 were used for fuel assembly modelling, core loading and 3D core simulation and assessment. The LP with 32 feed fuel assemblies and a maximum of 56 <span><math><mrow><msub><mrow><msub><mrow><mi>G</mi><mi>d</mi></mrow><mn>2</mn></msub><mi>O</mi></mrow><mn>3</mn></msub></mrow></math></span> doped fuel pins in a fuel assembly was adopted as the best LP. A RCCA insertion pattern for duty cycle operation of the candidate LP and the power-dependent rod insertion limit (PDIL) for power manoeuver have been established. In addition, free-xenon stability of core and RCCA movement-initiated xenon transient were assessed. The peak linear heat rate (<span><math><mrow><mi>P</mi><mi>L</mi><mi>H</mi><mi>R</mi></mrow></math></span>), enthalpy rise hot channel factor (<span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub><mo>)</mo><mtext>,</mtext></mrow></math></span> and the heat flux hot channel factor (<span><math><mrow><msub><mi>F</mi><mi>q</mi></msub><mo>)</mo><mtext>,</mtext></mrow></math></span> were used as a criterion for acceptance of RCCA insertion pattern at each burnup step and each power level associated with power manoeuver. The target <span><math><mrow><mi>P</mi><mi>L</mi><mi>H</mi><mi>R</mi><mtext>,</mtext></mrow></math></span> <span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub><mtext>,</mtext></mrow></math></span> and <span><math><mrow><msub><mi>F</mi><mi>q</mi></msub></mrow></math></span> were set at 42.12 kW/m, 1.65, and 2.6, respectively. The maximum values for <span><math><mrow><mi>P</mi><mi>L</mi><mi>H</mi><mi>R</mi><mtext>,</mtext></mrow></math></span> <span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub><mtext>,</mtext></mrow></math></span> and <span><math><mrow><msub><mi>F</mi><mi>q</mi></msub></mrow></math></span> associated with the RCCA insertions insertion pattern were found to be 38.2 kW/m, 1.608, and 2.38. The maximum <span><math><mrow><mi>P</mi><mi>L</mi><mi>H</mi><mi>R</mi><mtext>,</mtext></mrow></math></span> <span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub><mtext>,</mtext></mrow></math></span> and <span><math><mrow><msub><mi>F</mi><mi>q</mi></msub></mrow></math></span> values associated with power manoeuver for the power range 80%–100% were found to be 33.01 kW/m, 1.62, and 2.26 respectively. These values were associated with the 8.5 MWd/kg burnup step – a burnup step at which <span><math><mrow><msub><mrow><mi>G</mi><mi>d</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> depleted and the core had the maximum <span><math><mrow><msub><mi>F</mi><mrow><mo>Δ</mo><mi>H</mi></mrow></msub></mrow></math></span> value. The core was found to be stable with respect to free-xenon oscillations and xenon transients, as respective stability indices were found to be negative.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":\"191 \",\"pages\":\"Article 106062\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197025004603\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197025004603","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

操作无硼小型模块化反应堆(BFSMR)的挑战之一是增加使用棒簇控制组件(rcca)进行占空比操作和功率操纵,以及使用可燃毒物进行过度反应性控制。频繁的RCCA运动可能导致氙空间振荡增加。在这项工作中,评估了四个热输出相似的LP,为BFSMR堆芯确定候选LP。使用CASMO4、ROSA和SIMULATE3进行燃料组件建模、堆芯加载和三维堆芯仿真与评估。采用具有32个进料燃料组件和最多56个Gd2O3掺杂燃料管脚的LP作为最佳LP。建立了用于候选LP占空比工作的RCCA插入模式和用于功率操纵的功率依赖杆插入限制(PDIL)。此外,还评估了岩心的自由氙稳定性和RCCA运动引发的氙瞬态。采用峰值线性热速率(PLHR)、焓升热通道因子(FΔH)和热流通量热通道因子(Fq)作为在每个燃耗步骤和与功率操作相关的每个功率水平上接受RCCA插入模式的标准。目标PLHR、FΔH和Fq分别为42.12 kW/m、1.65和2.6。与RCCA插入模式相关的PLHR、FΔH和Fq最大值分别为38.2 kW/m、1.608和2.38。在功率范围为80%-100%时,与功率操纵相关的最大PLHR、FΔH和Fq值分别为33.01 kW/m、1.62和2.26。这些值与8.5 MWd/kg燃耗阶跃有关,在这个燃耗阶跃时,Gd2O3耗尽,堆芯的FΔH值最大。在自由氙振荡和氙瞬态方面,发现核心是稳定的,因为各自的稳定指数被发现是负的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duty cycle reactivity control and xenon spatial oscillation stability analysis of a boron-free small modular reactor core
One of the challenges associated with operating a boron-free Small Modular Reactor (BFSMR) is increased use of rod cluster control assemblies (RCCAs) for duty cycle operations and power manoeuver, and burnable poisons for excess reactivity control. Frequent RCCA movement may result in increased xenon spatial oscillations. In this work four LPs with similar thermal output of 1429.51 MW were assessed to determine a candidate LP for the BFSMR core. CASMO4, ROSA and SIMULATE3 were used for fuel assembly modelling, core loading and 3D core simulation and assessment. The LP with 32 feed fuel assemblies and a maximum of 56 Gd2O3 doped fuel pins in a fuel assembly was adopted as the best LP. A RCCA insertion pattern for duty cycle operation of the candidate LP and the power-dependent rod insertion limit (PDIL) for power manoeuver have been established. In addition, free-xenon stability of core and RCCA movement-initiated xenon transient were assessed. The peak linear heat rate (PLHR), enthalpy rise hot channel factor (FΔH), and the heat flux hot channel factor (Fq), were used as a criterion for acceptance of RCCA insertion pattern at each burnup step and each power level associated with power manoeuver. The target PLHR, FΔH, and Fq were set at 42.12 kW/m, 1.65, and 2.6, respectively. The maximum values for PLHR, FΔH, and Fq associated with the RCCA insertions insertion pattern were found to be 38.2 kW/m, 1.608, and 2.38. The maximum PLHR, FΔH, and Fq values associated with power manoeuver for the power range 80%–100% were found to be 33.01 kW/m, 1.62, and 2.26 respectively. These values were associated with the 8.5 MWd/kg burnup step – a burnup step at which Gd2O3 depleted and the core had the maximum FΔH value. The core was found to be stable with respect to free-xenon oscillations and xenon transients, as respective stability indices were found to be negative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Nuclear Energy
Progress in Nuclear Energy 工程技术-核科学技术
CiteScore
5.30
自引率
14.80%
发文量
331
审稿时长
3.5 months
期刊介绍: Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field. Please note the following: 1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy. 2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc. 3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信