自仿射海绵上分形渗透的Hausdorff变分原理和堆积维数

IF 1.5 1区 数学 Q1 MATHEMATICS
Julien Barral, Guilhem Brunet
{"title":"自仿射海绵上分形渗透的Hausdorff变分原理和堆积维数","authors":"Julien Barral,&nbsp;Guilhem Brunet","doi":"10.1016/j.aim.2025.110549","DOIUrl":null,"url":null,"abstract":"<div><div>We establish variational principles for the Hausdorff and packing dimensions of a class of statistically self-affine sponges, including in particular fractal percolation sets obtained from Barański and Gatzouras-Lalley carpets and sponges. Our first step is to compute the Hausdorff and packing dimensions of non-degenerate inhomogeneous Mandelbrot measures supported on the associated random limit sets. This is not a straightforward combination of the existing approaches for the deterministic inhomogeneous Bernoulli measures and the Mandelbrot measures on random Sierpiński sponges; it reveals new structural features. The variational principles rely on a specific subclass of inhomogeneous Mandelbrot measures, which are connected to localized digit frequencies in the underlying coding space. This connection makes it possible to construct effective coverings of the random limit set, leading to sharp upper bounds for its Hausdorff and packing dimensions.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110549"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational principles for Hausdorff and packing dimensions of fractal percolation on self-affine sponges\",\"authors\":\"Julien Barral,&nbsp;Guilhem Brunet\",\"doi\":\"10.1016/j.aim.2025.110549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish variational principles for the Hausdorff and packing dimensions of a class of statistically self-affine sponges, including in particular fractal percolation sets obtained from Barański and Gatzouras-Lalley carpets and sponges. Our first step is to compute the Hausdorff and packing dimensions of non-degenerate inhomogeneous Mandelbrot measures supported on the associated random limit sets. This is not a straightforward combination of the existing approaches for the deterministic inhomogeneous Bernoulli measures and the Mandelbrot measures on random Sierpiński sponges; it reveals new structural features. The variational principles rely on a specific subclass of inhomogeneous Mandelbrot measures, which are connected to localized digit frequencies in the underlying coding space. This connection makes it possible to construct effective coverings of the random limit set, leading to sharp upper bounds for its Hausdorff and packing dimensions.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110549\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004475\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004475","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一类统计上自仿射海绵的Hausdorff维数和包装维数的变分原理,特别是分形渗透集从Barański和Gatzouras-Lalley地毯和海绵中获得。我们的第一步是计算相关随机极限集上支持的非退化非齐次Mandelbrot测度的Hausdorff维数和包装维数。这不是对随机Sierpiński海绵上的确定性非齐次伯努利测度和曼德尔布罗测度的现有方法的直接组合;它揭示了新的结构特征。变分原理依赖于非齐次Mandelbrot测度的一个特定子类,它与底层编码空间中的局部数字频率相连。这种连接使得构造随机极限集的有效覆盖成为可能,从而导致其豪斯多夫尺寸和包装尺寸的明确上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational principles for Hausdorff and packing dimensions of fractal percolation on self-affine sponges
We establish variational principles for the Hausdorff and packing dimensions of a class of statistically self-affine sponges, including in particular fractal percolation sets obtained from Barański and Gatzouras-Lalley carpets and sponges. Our first step is to compute the Hausdorff and packing dimensions of non-degenerate inhomogeneous Mandelbrot measures supported on the associated random limit sets. This is not a straightforward combination of the existing approaches for the deterministic inhomogeneous Bernoulli measures and the Mandelbrot measures on random Sierpiński sponges; it reveals new structural features. The variational principles rely on a specific subclass of inhomogeneous Mandelbrot measures, which are connected to localized digit frequencies in the underlying coding space. This connection makes it possible to construct effective coverings of the random limit set, leading to sharp upper bounds for its Hausdorff and packing dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信