Diego Córdoba , Luis Martínez-Zoroa , Wojciech S. Ożański
{"title":"SQG方程的瞬时连续规律性丧失","authors":"Diego Córdoba , Luis Martínez-Zoroa , Wojciech S. Ożański","doi":"10.1016/j.aim.2025.110553","DOIUrl":null,"url":null,"abstract":"<div><div>Given <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>3</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, we construct a compactly supported initial data <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>≤</mo><mi>ε</mi></math></span> and there exist <span><math><mi>T</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> and a local-in-time solution <em>θ</em> of the SQG equation that is compactly supported in space, continuous and differentiable in <em>t</em> and in <em>x</em> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>, and, for each <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>, <span><math><mi>θ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>c</mi><mi>t</mi><mo>)</mo></mrow></msup></math></span> and <span><math><mi>θ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>t</mi><mo>)</mo><mo>∉</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> for any <span><math><mi>β</mi><mo>></mo><mi>s</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>c</mi><mi>t</mi><mo>)</mo></math></span>. Moreover, <em>θ</em> is unique among all solutions with initial condition <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> which belong to <span><math><mi>C</mi><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo><mo>;</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span> for any <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span> and is continuous and differentiable in <em>t</em> and in <em>x</em> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110553"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instantaneous continuous loss of regularity for the SQG equation\",\"authors\":\"Diego Córdoba , Luis Martínez-Zoroa , Wojciech S. Ożański\",\"doi\":\"10.1016/j.aim.2025.110553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>3</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, we construct a compactly supported initial data <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>≤</mo><mi>ε</mi></math></span> and there exist <span><math><mi>T</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> and a local-in-time solution <em>θ</em> of the SQG equation that is compactly supported in space, continuous and differentiable in <em>t</em> and in <em>x</em> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>, and, for each <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>, <span><math><mi>θ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>c</mi><mi>t</mi><mo>)</mo></mrow></msup></math></span> and <span><math><mi>θ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>t</mi><mo>)</mo><mo>∉</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> for any <span><math><mi>β</mi><mo>></mo><mi>s</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>c</mi><mi>t</mi><mo>)</mo></math></span>. Moreover, <em>θ</em> is unique among all solutions with initial condition <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> which belong to <span><math><mi>C</mi><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo><mo>;</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span> for any <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span> and is continuous and differentiable in <em>t</em> and in <em>x</em> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110553\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004517\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004517","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Instantaneous continuous loss of regularity for the SQG equation
Given and , we construct a compactly supported initial data such that and there exist , and a local-in-time solution θ of the SQG equation that is compactly supported in space, continuous and differentiable in t and in x on , and, for each , and for any . Moreover, θ is unique among all solutions with initial condition which belong to for any and is continuous and differentiable in t and in x on .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.