SQG方程的瞬时连续规律性丧失

IF 1.5 1区 数学 Q1 MATHEMATICS
Diego Córdoba , Luis Martínez-Zoroa , Wojciech S. Ożański
{"title":"SQG方程的瞬时连续规律性丧失","authors":"Diego Córdoba ,&nbsp;Luis Martínez-Zoroa ,&nbsp;Wojciech S. Ożański","doi":"10.1016/j.aim.2025.110553","DOIUrl":null,"url":null,"abstract":"<div><div>Given <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>3</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, we construct a compactly supported initial data <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>≤</mo><mi>ε</mi></math></span> and there exist <span><math><mi>T</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> and a local-in-time solution <em>θ</em> of the SQG equation that is compactly supported in space, continuous and differentiable in <em>t</em> and in <em>x</em> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>, and, for each <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>, <span><math><mi>θ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>c</mi><mi>t</mi><mo>)</mo></mrow></msup></math></span> and <span><math><mi>θ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>t</mi><mo>)</mo><mo>∉</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> for any <span><math><mi>β</mi><mo>&gt;</mo><mi>s</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>c</mi><mi>t</mi><mo>)</mo></math></span>. Moreover, <em>θ</em> is unique among all solutions with initial condition <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> which belong to <span><math><mi>C</mi><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo><mo>;</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span> for any <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> and is continuous and differentiable in <em>t</em> and in <em>x</em> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110553"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instantaneous continuous loss of regularity for the SQG equation\",\"authors\":\"Diego Córdoba ,&nbsp;Luis Martínez-Zoroa ,&nbsp;Wojciech S. Ożański\",\"doi\":\"10.1016/j.aim.2025.110553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>3</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, we construct a compactly supported initial data <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>≤</mo><mi>ε</mi></math></span> and there exist <span><math><mi>T</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> and a local-in-time solution <em>θ</em> of the SQG equation that is compactly supported in space, continuous and differentiable in <em>t</em> and in <em>x</em> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>, and, for each <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>, <span><math><mi>θ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>c</mi><mi>t</mi><mo>)</mo></mrow></msup></math></span> and <span><math><mi>θ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>t</mi><mo>)</mo><mo>∉</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> for any <span><math><mi>β</mi><mo>&gt;</mo><mi>s</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>c</mi><mi>t</mi><mo>)</mo></math></span>. Moreover, <em>θ</em> is unique among all solutions with initial condition <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> which belong to <span><math><mi>C</mi><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo><mo>;</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span> for any <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> and is continuous and differentiable in <em>t</em> and in <em>x</em> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110553\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004517\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004517","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定s∈(3/2,2)和ε>;0,构造一个紧支持的初始数据θ0,使得‖θ0‖Hs≤ε,且存在T>;0, c>;0和一个在r2x [0, t]上空间紧支持,在t和x上连续可微的SQG方程的局域时解θ,并且对于每个t∈[0,t], θ(⋅,t)∈Hs/(1+ct)和θ(⋅,t)∈Hβ,对于任意β>;s/(1+ct)。而且,对于任意δ>;0, θ在所有初始条件为θ0的C([0,T];H1+δ)解中是唯一的,并且在r2x [0,T]上在T和x上连续可微。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instantaneous continuous loss of regularity for the SQG equation
Given s(3/2,2) and ε>0, we construct a compactly supported initial data θ0 such that θ0Hsε and there exist T>0, c>0 and a local-in-time solution θ of the SQG equation that is compactly supported in space, continuous and differentiable in t and in x on R2×[0,T], and, for each t[0,T], θ(,t)Hs/(1+ct) and θ(,t)Hβ for any β>s/(1+ct). Moreover, θ is unique among all solutions with initial condition θ0 which belong to C([0,T];H1+δ) for any δ>0 and is continuous and differentiable in t and in x on R2×[0,T].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信