学习广义虹膜分割的域不变表示

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dawei Lin , Meng Yuan , Ying Chen , Xiaodong Zhu , Yuanning Liu
{"title":"学习广义虹膜分割的域不变表示","authors":"Dawei Lin ,&nbsp;Meng Yuan ,&nbsp;Ying Chen ,&nbsp;Xiaodong Zhu ,&nbsp;Yuanning Liu","doi":"10.1016/j.eswa.2025.129746","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-domain iris segmentation (CDIS) seeks to transfer knowledge from a labeled source dataset to an unlabeled target dataset. Existing CNN-based iris segmentation methods commonly assume that training and application stages share the same data distribution and modality setting, thus their performance may decline substantially on open-domain iris datasets unseen before. Furthermore, the process of annotating pixel-wise labels is labor-intensive and time-consuming, resulting in limited applicability of these methods in realistic scenarios. Therefore, we propose a generic domain adaptation iris segmentation framework (<em>DAIrisSeg</em>), which can be flexibly incorporated into existing methods. First, a domain-sensitive feature whitening strategy is proposed to effectively mitigate the domain-specific styles while preserving the domain-invariant content, thereby improving the model’s generalizability to unknown domain distribution. We then utilize the prototype estimation and the context-similarity learning adapter to produce reliable segmentation labels. In addition, DAIrisSeg incorporates prior constraints of the iris to further refine the segmentation results. Extensive experiments on three iris datasets demonstrate that the proposed method has shown consistent improvements over state-of-the-art (SOTA) methods.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"298 ","pages":"Article 129746"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning domain-invariant representation for generalizable iris segmentation\",\"authors\":\"Dawei Lin ,&nbsp;Meng Yuan ,&nbsp;Ying Chen ,&nbsp;Xiaodong Zhu ,&nbsp;Yuanning Liu\",\"doi\":\"10.1016/j.eswa.2025.129746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cross-domain iris segmentation (CDIS) seeks to transfer knowledge from a labeled source dataset to an unlabeled target dataset. Existing CNN-based iris segmentation methods commonly assume that training and application stages share the same data distribution and modality setting, thus their performance may decline substantially on open-domain iris datasets unseen before. Furthermore, the process of annotating pixel-wise labels is labor-intensive and time-consuming, resulting in limited applicability of these methods in realistic scenarios. Therefore, we propose a generic domain adaptation iris segmentation framework (<em>DAIrisSeg</em>), which can be flexibly incorporated into existing methods. First, a domain-sensitive feature whitening strategy is proposed to effectively mitigate the domain-specific styles while preserving the domain-invariant content, thereby improving the model’s generalizability to unknown domain distribution. We then utilize the prototype estimation and the context-similarity learning adapter to produce reliable segmentation labels. In addition, DAIrisSeg incorporates prior constraints of the iris to further refine the segmentation results. Extensive experiments on three iris datasets demonstrate that the proposed method has shown consistent improvements over state-of-the-art (SOTA) methods.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"298 \",\"pages\":\"Article 129746\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425033615\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425033615","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

跨域虹膜分割(CDIS)旨在将知识从标记的源数据集转移到未标记的目标数据集。现有的基于cnn的虹膜分割方法通常假设训练阶段和应用阶段共享相同的数据分布和模态设置,因此它们在开放域虹膜数据集上的性能可能会大幅下降。此外,标注逐像素标签的过程是劳动密集型和耗时的,导致这些方法在现实场景中的适用性有限。因此,我们提出了一种通用的领域自适应虹膜分割框架(dairisg),该框架可以灵活地与现有方法相结合。首先,提出了一种领域敏感特征白化策略,在保留领域不变内容的同时,有效地缓解了领域特定样式,从而提高了模型对未知领域分布的泛化能力;然后,我们利用原型估计和上下文相似学习适配器来产生可靠的分割标签。此外,dairissig还结合了虹膜的先验约束,进一步细化了分割结果。在三个虹膜数据集上进行的大量实验表明,所提出的方法比最先进的(SOTA)方法有一致的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning domain-invariant representation for generalizable iris segmentation
Cross-domain iris segmentation (CDIS) seeks to transfer knowledge from a labeled source dataset to an unlabeled target dataset. Existing CNN-based iris segmentation methods commonly assume that training and application stages share the same data distribution and modality setting, thus their performance may decline substantially on open-domain iris datasets unseen before. Furthermore, the process of annotating pixel-wise labels is labor-intensive and time-consuming, resulting in limited applicability of these methods in realistic scenarios. Therefore, we propose a generic domain adaptation iris segmentation framework (DAIrisSeg), which can be flexibly incorporated into existing methods. First, a domain-sensitive feature whitening strategy is proposed to effectively mitigate the domain-specific styles while preserving the domain-invariant content, thereby improving the model’s generalizability to unknown domain distribution. We then utilize the prototype estimation and the context-similarity learning adapter to produce reliable segmentation labels. In addition, DAIrisSeg incorporates prior constraints of the iris to further refine the segmentation results. Extensive experiments on three iris datasets demonstrate that the proposed method has shown consistent improvements over state-of-the-art (SOTA) methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信