k-Cauchy-Fueter复合体的四元数射影不变性及其应用[j]

IF 0.7 4区 数学 Q3 MATHEMATICS
Wei Wang
{"title":"k-Cauchy-Fueter复合体的四元数射影不变性及其应用[j]","authors":"Wei Wang","doi":"10.1016/j.difgeo.2025.102299","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>k</em>-Cauchy-Fueter complex in quaternionic analysis is the counterpart of the Dolbeault complex in complex analysis. In this paper, we find the explicit transformation formula of these complexes under <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>H</mi><mo>)</mo></math></span>, which acts on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> as quaternionic fractional linear transformations. These transformation formulae have several interesting applications to <em>k</em>-regular functions, the quaternionic counterpart of holomorphic functions, and geometry of domains. They allow us to construct the <em>k</em>-Cauchy-Fueter complex over locally quaternionic projective flat manifolds explicitly and introduce various notions of pluripotential theory on this kind of manifolds. We also construct a quaternionic projectively invariant operator from the quaternionic Monge-Ampère operator, which can be used to find projectively invariant defining density of a domain, generalizing Fefferman's construction in complex analysis.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"101 ","pages":"Article 102299"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quaternionic projective invariance of the k-Cauchy-Fueter complex and applications I\",\"authors\":\"Wei Wang\",\"doi\":\"10.1016/j.difgeo.2025.102299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <em>k</em>-Cauchy-Fueter complex in quaternionic analysis is the counterpart of the Dolbeault complex in complex analysis. In this paper, we find the explicit transformation formula of these complexes under <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>H</mi><mo>)</mo></math></span>, which acts on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> as quaternionic fractional linear transformations. These transformation formulae have several interesting applications to <em>k</em>-regular functions, the quaternionic counterpart of holomorphic functions, and geometry of domains. They allow us to construct the <em>k</em>-Cauchy-Fueter complex over locally quaternionic projective flat manifolds explicitly and introduce various notions of pluripotential theory on this kind of manifolds. We also construct a quaternionic projectively invariant operator from the quaternionic Monge-Ampère operator, which can be used to find projectively invariant defining density of a domain, generalizing Fefferman's construction in complex analysis.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"101 \",\"pages\":\"Article 102299\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000749\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000749","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

四元数分析中的k-Cauchy-Fueter配合物相当于复分析中的Dolbeault配合物。本文给出了这些配合物在SL(n+1,H)作用于Hn的四元分数阶线性变换下的显式变换公式。这些变换公式在k正则函数、全纯函数的四元数对应物和定义域几何中有几个有趣的应用。它们允许我们显式地构造局部四元数射影平面流形上的k-Cauchy-Fueter复形,并在这类流形上引入了多能势理论的各种概念。我们还从四元数monge - ampontre算子出发构造了一个四元数射影不变算子,该算子可用于求一个域的射影不变定义密度,推广了复分析中的Fefferman构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quaternionic projective invariance of the k-Cauchy-Fueter complex and applications I
The k-Cauchy-Fueter complex in quaternionic analysis is the counterpart of the Dolbeault complex in complex analysis. In this paper, we find the explicit transformation formula of these complexes under SL(n+1,H), which acts on Hn as quaternionic fractional linear transformations. These transformation formulae have several interesting applications to k-regular functions, the quaternionic counterpart of holomorphic functions, and geometry of domains. They allow us to construct the k-Cauchy-Fueter complex over locally quaternionic projective flat manifolds explicitly and introduce various notions of pluripotential theory on this kind of manifolds. We also construct a quaternionic projectively invariant operator from the quaternionic Monge-Ampère operator, which can be used to find projectively invariant defining density of a domain, generalizing Fefferman's construction in complex analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信