保隐私CNN推理中的优化同态线性计算

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chenglong Li , Xirong Ma , Xiuhao Wang , Fanyu Kong , Yunting Tao , Chunpeng Ge
{"title":"保隐私CNN推理中的优化同态线性计算","authors":"Chenglong Li ,&nbsp;Xirong Ma ,&nbsp;Xiuhao Wang ,&nbsp;Fanyu Kong ,&nbsp;Yunting Tao ,&nbsp;Chunpeng Ge","doi":"10.1016/j.eswa.2025.129767","DOIUrl":null,"url":null,"abstract":"<div><div>Machine Learning as a Service (MLaaS) provides robust solutions for deploying deep learning inference in cloud environments. However, it also raises serious privacy concerns regarding user data and proprietary model parameters. Numerous hybrid cryptographic protocols that integrate homomorphic encryption (HE) and garbled circuits (GC) have been proposed to enable secure inference with low latency. In these protocols, the homomorphic evaluation of linear operations remains the primary performance bottleneck and warrants further optimization. In this work, we propose novel optimizations for HE-based linear computations within the hybrid cryptographic framework for secure neural network inference. Specifically, we devise two efficient strategies for homomorphic matrix-vector multiplication and convolution. For matrix-vector multiplication, we introduce a grouped diagonal extraction technique that encodes the weight matrix more compactly and enables configurable ciphertext rotation reuse, while for homomorphic convolution, we present a group-wise combine-and-merge evaluation method. Both methods significantly reduce the number of required ciphertext rotations. Our approach achieves up to a <span><math><mrow><mn>3.9</mn><mo>×</mo></mrow></math></span> speedup in matrix-vector multiplication and a <span><math><mrow><mn>2.9</mn><mo>×</mo></mrow></math></span> improvement in convolution over state-of-the-art (SOTA) solutions. The HE-GC hybrid secure convolutional neural networks (CNN) inference framework incorporating these enhancements yields speedups of <span><math><mrow><mn>2.5</mn><mo>×</mo></mrow></math></span> on widely used ResNets deep learning architectures.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"298 ","pages":"Article 129767"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized homomorphic linear computation in privacy-preserving CNN inference\",\"authors\":\"Chenglong Li ,&nbsp;Xirong Ma ,&nbsp;Xiuhao Wang ,&nbsp;Fanyu Kong ,&nbsp;Yunting Tao ,&nbsp;Chunpeng Ge\",\"doi\":\"10.1016/j.eswa.2025.129767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine Learning as a Service (MLaaS) provides robust solutions for deploying deep learning inference in cloud environments. However, it also raises serious privacy concerns regarding user data and proprietary model parameters. Numerous hybrid cryptographic protocols that integrate homomorphic encryption (HE) and garbled circuits (GC) have been proposed to enable secure inference with low latency. In these protocols, the homomorphic evaluation of linear operations remains the primary performance bottleneck and warrants further optimization. In this work, we propose novel optimizations for HE-based linear computations within the hybrid cryptographic framework for secure neural network inference. Specifically, we devise two efficient strategies for homomorphic matrix-vector multiplication and convolution. For matrix-vector multiplication, we introduce a grouped diagonal extraction technique that encodes the weight matrix more compactly and enables configurable ciphertext rotation reuse, while for homomorphic convolution, we present a group-wise combine-and-merge evaluation method. Both methods significantly reduce the number of required ciphertext rotations. Our approach achieves up to a <span><math><mrow><mn>3.9</mn><mo>×</mo></mrow></math></span> speedup in matrix-vector multiplication and a <span><math><mrow><mn>2.9</mn><mo>×</mo></mrow></math></span> improvement in convolution over state-of-the-art (SOTA) solutions. The HE-GC hybrid secure convolutional neural networks (CNN) inference framework incorporating these enhancements yields speedups of <span><math><mrow><mn>2.5</mn><mo>×</mo></mrow></math></span> on widely used ResNets deep learning architectures.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"298 \",\"pages\":\"Article 129767\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425033822\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425033822","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习即服务(MLaaS)为在云环境中部署深度学习推理提供了强大的解决方案。然而,它也引起了关于用户数据和专有模型参数的严重隐私问题。为了实现低延迟的安全推理,已经提出了许多集成了同态加密(HE)和乱码电路(GC)的混合密码协议。在这些协议中,线性运算的同态求值仍然是主要的性能瓶颈,需要进一步优化。在这项工作中,我们提出了在混合密码框架内用于安全神经网络推理的基于he的线性计算的新优化。具体来说,我们设计了两种有效的同态矩阵向量乘法和卷积策略。对于矩阵-向量乘法,我们引入了一种分组对角提取技术,该技术可以更紧凑地编码权矩阵并实现可配置的密文旋转重用,而对于同态卷积,我们提出了一种分组明智的组合合并评估方法。这两种方法都大大减少了所需的密文旋转次数。我们的方法在矩阵向量乘法中实现了高达3.9倍的加速,在卷积中实现了2.9倍的改进,这是最先进的(SOTA)解决方案。结合这些增强的HE-GC混合安全卷积神经网络(CNN)推理框架在广泛使用的ResNets深度学习架构上的速度提高了2.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized homomorphic linear computation in privacy-preserving CNN inference
Machine Learning as a Service (MLaaS) provides robust solutions for deploying deep learning inference in cloud environments. However, it also raises serious privacy concerns regarding user data and proprietary model parameters. Numerous hybrid cryptographic protocols that integrate homomorphic encryption (HE) and garbled circuits (GC) have been proposed to enable secure inference with low latency. In these protocols, the homomorphic evaluation of linear operations remains the primary performance bottleneck and warrants further optimization. In this work, we propose novel optimizations for HE-based linear computations within the hybrid cryptographic framework for secure neural network inference. Specifically, we devise two efficient strategies for homomorphic matrix-vector multiplication and convolution. For matrix-vector multiplication, we introduce a grouped diagonal extraction technique that encodes the weight matrix more compactly and enables configurable ciphertext rotation reuse, while for homomorphic convolution, we present a group-wise combine-and-merge evaluation method. Both methods significantly reduce the number of required ciphertext rotations. Our approach achieves up to a 3.9× speedup in matrix-vector multiplication and a 2.9× improvement in convolution over state-of-the-art (SOTA) solutions. The HE-GC hybrid secure convolutional neural networks (CNN) inference framework incorporating these enhancements yields speedups of 2.5× on widely used ResNets deep learning architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信