集成多通道信息概率扩散生成和改进补偿损失策略的光伏集群功率超短期跨季节预测

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mao Yang , Yue Jiang , Yunfeng Guo , Jianfeng Che , Wei He , Kang Wu
{"title":"集成多通道信息概率扩散生成和改进补偿损失策略的光伏集群功率超短期跨季节预测","authors":"Mao Yang ,&nbsp;Yue Jiang ,&nbsp;Yunfeng Guo ,&nbsp;Jianfeng Che ,&nbsp;Wei He ,&nbsp;Kang Wu","doi":"10.1016/j.eswa.2025.129826","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate photovoltaic (PV) power prediction under complex meteorological conditions remains challenging, particularly given the pronounced seasonal variations that obscure generation patterns. This study presents a novel ultra-short-term prediction framework integrating meteorological volatility analysis with seasonal characteristic modeling. We developed a specialized multi-channel Gram angular summation field (MGASF) transformation matrix to holistically capture meteorological fluctuations, subsequently leveraging denoising diffusion probabilistic model (DDPM) for strategic augmentation of under-represented weather scenarios to enhance similar-day identification. Our hybrid architecture combines multi-channel vision Transformer (VIT) with bidirectional long and short-term memory (BILSTM) networks to synergistically analyze temporal dependencies and spatial patterns in PV similarity recognition. Furthermore, we engineered a seasonal-adaptive prediction system through an improved variable-weight Smooth L1 loss function, establishing an optimized seasonal alignment mechanism that achieves high-precision prediction across varying meteorological conditions with minimal computational overhead. Through rigorous validation using operational data from a utility-scale photovoltaic cluster in Western Inner Mongolia, the proposed method achieved consistent accuracy improvements: 3.02 % reduction in <em>N<sub>RMSE</sub></em>, 1.65 % decrease in <em>N<sub>MAE</sub></em>, and 2.19 % enhancement in R<sup>2</sup> compared to baseline approaches in PV cluster. These statistically significant enhancements demonstrate our framework’s capability to mitigate seasonal impacts while maintaining prediction reliability in complex meteorological environments.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"298 ","pages":"Article 129826"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photovoltaic cluster power ultra-short-term cross-seasonal prediction integrating multi-channel information probabilistic diffusion generation and improved offset loss strategy\",\"authors\":\"Mao Yang ,&nbsp;Yue Jiang ,&nbsp;Yunfeng Guo ,&nbsp;Jianfeng Che ,&nbsp;Wei He ,&nbsp;Kang Wu\",\"doi\":\"10.1016/j.eswa.2025.129826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate photovoltaic (PV) power prediction under complex meteorological conditions remains challenging, particularly given the pronounced seasonal variations that obscure generation patterns. This study presents a novel ultra-short-term prediction framework integrating meteorological volatility analysis with seasonal characteristic modeling. We developed a specialized multi-channel Gram angular summation field (MGASF) transformation matrix to holistically capture meteorological fluctuations, subsequently leveraging denoising diffusion probabilistic model (DDPM) for strategic augmentation of under-represented weather scenarios to enhance similar-day identification. Our hybrid architecture combines multi-channel vision Transformer (VIT) with bidirectional long and short-term memory (BILSTM) networks to synergistically analyze temporal dependencies and spatial patterns in PV similarity recognition. Furthermore, we engineered a seasonal-adaptive prediction system through an improved variable-weight Smooth L1 loss function, establishing an optimized seasonal alignment mechanism that achieves high-precision prediction across varying meteorological conditions with minimal computational overhead. Through rigorous validation using operational data from a utility-scale photovoltaic cluster in Western Inner Mongolia, the proposed method achieved consistent accuracy improvements: 3.02 % reduction in <em>N<sub>RMSE</sub></em>, 1.65 % decrease in <em>N<sub>MAE</sub></em>, and 2.19 % enhancement in R<sup>2</sup> compared to baseline approaches in PV cluster. These statistically significant enhancements demonstrate our framework’s capability to mitigate seasonal impacts while maintaining prediction reliability in complex meteorological environments.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"298 \",\"pages\":\"Article 129826\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425034414\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425034414","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在复杂的气象条件下,准确的光伏发电(PV)功率预测仍然具有挑战性,特别是考虑到明显的季节变化,使发电模式模糊不清。本文提出了一种将气象波动分析与季节特征建模相结合的超短期预测框架。我们开发了一个专门的多通道克角求和场(MGASF)变换矩阵来全面捕捉气象波动,随后利用去噪扩散概率模型(DDPM)来战略性地增加代表性不足的天气情景,以增强相似日的识别。我们的混合架构结合了多通道视觉变压器(VIT)和双向长短期记忆(BILSTM)网络,以协同分析PV相似度识别中的时间依赖性和空间模式。此外,我们通过改进的变权平滑L1损失函数设计了一个季节自适应预测系统,建立了一个优化的季节对准机制,以最小的计算开销实现了不同气象条件下的高精度预测。通过使用内蒙古西部一个公用事业规模光伏集群的运行数据进行严格验证,与光伏集群的基线方法相比,该方法取得了一致的精度提高:NRMSE降低3.02%,NMAE降低1.65%,R2提高2.19%。这些统计上显著的增强表明,我们的框架能够减轻季节性影响,同时在复杂的气象环境中保持预测的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photovoltaic cluster power ultra-short-term cross-seasonal prediction integrating multi-channel information probabilistic diffusion generation and improved offset loss strategy
Accurate photovoltaic (PV) power prediction under complex meteorological conditions remains challenging, particularly given the pronounced seasonal variations that obscure generation patterns. This study presents a novel ultra-short-term prediction framework integrating meteorological volatility analysis with seasonal characteristic modeling. We developed a specialized multi-channel Gram angular summation field (MGASF) transformation matrix to holistically capture meteorological fluctuations, subsequently leveraging denoising diffusion probabilistic model (DDPM) for strategic augmentation of under-represented weather scenarios to enhance similar-day identification. Our hybrid architecture combines multi-channel vision Transformer (VIT) with bidirectional long and short-term memory (BILSTM) networks to synergistically analyze temporal dependencies and spatial patterns in PV similarity recognition. Furthermore, we engineered a seasonal-adaptive prediction system through an improved variable-weight Smooth L1 loss function, establishing an optimized seasonal alignment mechanism that achieves high-precision prediction across varying meteorological conditions with minimal computational overhead. Through rigorous validation using operational data from a utility-scale photovoltaic cluster in Western Inner Mongolia, the proposed method achieved consistent accuracy improvements: 3.02 % reduction in NRMSE, 1.65 % decrease in NMAE, and 2.19 % enhancement in R2 compared to baseline approaches in PV cluster. These statistically significant enhancements demonstrate our framework’s capability to mitigate seasonal impacts while maintaining prediction reliability in complex meteorological environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信