CM-CSAMFNet:一种用于多模态医学图像融合的跨模态通道和空间关注模块融合网络

IF 3.6 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yixiang Lu, Changqing Xu, Jingyun Gong, Qingwei Gao, Dong Sun, De Zhu
{"title":"CM-CSAMFNet:一种用于多模态医学图像融合的跨模态通道和空间关注模块融合网络","authors":"Yixiang Lu,&nbsp;Changqing Xu,&nbsp;Jingyun Gong,&nbsp;Qingwei Gao,&nbsp;Dong Sun,&nbsp;De Zhu","doi":"10.1016/j.sigpro.2025.110288","DOIUrl":null,"url":null,"abstract":"<div><div>The fusion technology of functional and structural images contributes to clinical diagnosis by integrating complementary information from different modalities. However, traditional state-of-the-art fusion methods and convolutional networks still require manually designed fusion strategies, which are inefficient and struggle to effectively merge complementary information across modalities. In addition, multiscale fusion methods suffer from excessive model parameters and inadequate consideration of long-range dependencies. To overcome these limitations, an attention-based end-to-end framework (CM-CSAMFNet) is proposed for medical image fusion using a multiscale autoencoder architecture. To design a learnable fusion strategy, we introduce a convolutional block attention module fusion network (CBAMFNet), which leverages cross-modal channel and spatial attention mechanisms to replace conventional fusion approaches. To reduce the number of parameters in multiscale network, the entire network employs ghost convolution techniques, which require only a small number of convolutional operations while extensively utilizing linear computations. Furthermore, to fully account for long-range dependencies, a cross-domain attention mechanism named the cross-modal residual convolutional block attention module (RCBAM) is proposed. This mechanism aims to comprehensively integrate locally complementary features and enhance global brightness information. More specifically, the cross-domain attention module incorporates spatial and channel attention mechanisms to integrate long-range dependencies within and across different modalities. Compared to existing approaches, the proposed fusion algorithm achieves superior performance in SPECT–MRI and PET–MRI image fusion tasks, as evaluated by both subjective and objective metrics. The code of the proposed method is available at <span><span>https://github.com/ahu-dsp/CM-CSAMFNet</span><svg><path></path></svg></span></div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110288"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CM-CSAMFNet: A cross-modality channel and spatial attention module fusion network for multimodal medical image fusion\",\"authors\":\"Yixiang Lu,&nbsp;Changqing Xu,&nbsp;Jingyun Gong,&nbsp;Qingwei Gao,&nbsp;Dong Sun,&nbsp;De Zhu\",\"doi\":\"10.1016/j.sigpro.2025.110288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fusion technology of functional and structural images contributes to clinical diagnosis by integrating complementary information from different modalities. However, traditional state-of-the-art fusion methods and convolutional networks still require manually designed fusion strategies, which are inefficient and struggle to effectively merge complementary information across modalities. In addition, multiscale fusion methods suffer from excessive model parameters and inadequate consideration of long-range dependencies. To overcome these limitations, an attention-based end-to-end framework (CM-CSAMFNet) is proposed for medical image fusion using a multiscale autoencoder architecture. To design a learnable fusion strategy, we introduce a convolutional block attention module fusion network (CBAMFNet), which leverages cross-modal channel and spatial attention mechanisms to replace conventional fusion approaches. To reduce the number of parameters in multiscale network, the entire network employs ghost convolution techniques, which require only a small number of convolutional operations while extensively utilizing linear computations. Furthermore, to fully account for long-range dependencies, a cross-domain attention mechanism named the cross-modal residual convolutional block attention module (RCBAM) is proposed. This mechanism aims to comprehensively integrate locally complementary features and enhance global brightness information. More specifically, the cross-domain attention module incorporates spatial and channel attention mechanisms to integrate long-range dependencies within and across different modalities. Compared to existing approaches, the proposed fusion algorithm achieves superior performance in SPECT–MRI and PET–MRI image fusion tasks, as evaluated by both subjective and objective metrics. The code of the proposed method is available at <span><span>https://github.com/ahu-dsp/CM-CSAMFNet</span><svg><path></path></svg></span></div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"239 \",\"pages\":\"Article 110288\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425004025\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425004025","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

功能和结构图像融合技术通过整合不同形态的互补信息,有助于临床诊断。然而,传统的融合方法和卷积网络仍然需要人工设计融合策略,这些策略效率低下,难以有效地融合跨模态的互补信息。此外,多尺度融合方法存在模型参数过多和对远程依赖关系考虑不足的问题。为了克服这些限制,提出了一种基于注意力的端到端医学图像融合框架(CM-CSAMFNet),该框架采用多尺度自编码器结构。为了设计一个可学习的融合策略,我们引入了一个卷积块注意模块融合网络(cbbamfnet),它利用跨模态通道和空间注意机制来取代传统的融合方法。为了减少多尺度网络中参数的数量,整个网络采用了幽灵卷积技术,该技术只需要少量的卷积运算,而大量使用线性计算。此外,为了充分考虑远程依赖关系,提出了一种跨域注意机制——跨模态残差卷积块注意模块(RCBAM)。该机制旨在全面整合局部互补特征,增强全局亮度信息。更具体地说,跨域注意模块结合了空间和通道注意机制,以整合不同模态内部和之间的远程依赖关系。与现有方法相比,本文提出的融合算法在SPECT-MRI和PET-MRI图像融合任务中获得了更好的性能,并通过主观和客观指标进行了评估。所提出的方法的代码可在https://github.com/ahu-dsp/CM-CSAMFNet上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CM-CSAMFNet: A cross-modality channel and spatial attention module fusion network for multimodal medical image fusion
The fusion technology of functional and structural images contributes to clinical diagnosis by integrating complementary information from different modalities. However, traditional state-of-the-art fusion methods and convolutional networks still require manually designed fusion strategies, which are inefficient and struggle to effectively merge complementary information across modalities. In addition, multiscale fusion methods suffer from excessive model parameters and inadequate consideration of long-range dependencies. To overcome these limitations, an attention-based end-to-end framework (CM-CSAMFNet) is proposed for medical image fusion using a multiscale autoencoder architecture. To design a learnable fusion strategy, we introduce a convolutional block attention module fusion network (CBAMFNet), which leverages cross-modal channel and spatial attention mechanisms to replace conventional fusion approaches. To reduce the number of parameters in multiscale network, the entire network employs ghost convolution techniques, which require only a small number of convolutional operations while extensively utilizing linear computations. Furthermore, to fully account for long-range dependencies, a cross-domain attention mechanism named the cross-modal residual convolutional block attention module (RCBAM) is proposed. This mechanism aims to comprehensively integrate locally complementary features and enhance global brightness information. More specifically, the cross-domain attention module incorporates spatial and channel attention mechanisms to integrate long-range dependencies within and across different modalities. Compared to existing approaches, the proposed fusion algorithm achieves superior performance in SPECT–MRI and PET–MRI image fusion tasks, as evaluated by both subjective and objective metrics. The code of the proposed method is available at https://github.com/ahu-dsp/CM-CSAMFNet
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信