抛物型hsamnon - lane - emden系统正径向稳态的稳定性

IF 1.3 2区 数学 Q1 MATHEMATICS
Daniel Devine , Paschalis Karageorgis
{"title":"抛物型hsamnon - lane - emden系统正径向稳态的稳定性","authors":"Daniel Devine ,&nbsp;Paschalis Karageorgis","doi":"10.1016/j.na.2025.113945","DOIUrl":null,"url":null,"abstract":"<div><div>When it comes to the nonlinear heat equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span>, the stability of positive radial steady states in the supercritical case was established in the classical paper by Gui, Ni and Wang. We extend this result to systems of reaction–diffusion equations by studying the positive radial steady states of the parabolic Hénon–Lane–Emden system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi></mtd><mtd><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup></mtd><mtd><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>v</mi></mtd><mtd><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>l</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mtd><mtd><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>k</mi><mo>,</mo><mi>l</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>p</mi><mi>q</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Assume that <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span> lies either on or above the Joseph–Lundgren critical curve which arose in the work of Chen, Dupaigne and Ghergu. Then all positive radial steady states have the same asymptotic behavior at infinity, and they are all stable solutions of the parabolic Hénon–Lane–Emden system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113945"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of positive radial steady states for the parabolic Hénon–Lane–Emden system\",\"authors\":\"Daniel Devine ,&nbsp;Paschalis Karageorgis\",\"doi\":\"10.1016/j.na.2025.113945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When it comes to the nonlinear heat equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span>, the stability of positive radial steady states in the supercritical case was established in the classical paper by Gui, Ni and Wang. We extend this result to systems of reaction–diffusion equations by studying the positive radial steady states of the parabolic Hénon–Lane–Emden system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi></mtd><mtd><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup></mtd><mtd><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>v</mi></mtd><mtd><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>l</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mtd><mtd><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>k</mi><mo>,</mo><mi>l</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>p</mi><mi>q</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Assume that <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span> lies either on or above the Joseph–Lundgren critical curve which arose in the work of Chen, Dupaigne and Ghergu. Then all positive radial steady states have the same asymptotic behavior at infinity, and they are all stable solutions of the parabolic Hénon–Lane–Emden system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113945\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X2500197X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2500197X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于非线性热方程ut−Δu=up, Gui、Ni和Wang在经典论文中建立了超临界情况下径向正稳态的稳定性。通过研究抛物型h - lane - emden系统ut−Δu=|x| kvpinrnx(0,∞),vt−Δv=|x| luqinrnx(0,∞),其中k,l≥0,p,q≥1,pq>;1的正径向稳态,我们将这一结果推广到反应扩散方程系统。假设(p,q)位于Joseph-Lundgren临界曲线上或之上,该曲线由Chen、Dupaigne和Ghergu提出。那么所有正径向稳态在无穷远处都具有相同的渐近性质,它们都是Rn中抛物型h - lane - emden系统的稳定解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of positive radial steady states for the parabolic Hénon–Lane–Emden system
When it comes to the nonlinear heat equation utΔu=up, the stability of positive radial steady states in the supercritical case was established in the classical paper by Gui, Ni and Wang. We extend this result to systems of reaction–diffusion equations by studying the positive radial steady states of the parabolic Hénon–Lane–Emden system utΔu=|x|kvpinRn×(0,),vtΔv=|x|luqinRn×(0,),where k,l0, p,q1 and pq>1. Assume that (p,q) lies either on or above the Joseph–Lundgren critical curve which arose in the work of Chen, Dupaigne and Ghergu. Then all positive radial steady states have the same asymptotic behavior at infinity, and they are all stable solutions of the parabolic Hénon–Lane–Emden system in Rn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信