非局部诺伊曼条件下非线性(p,q)分数阶拉普拉斯算子的特征值

IF 1.3 2区 数学 Q1 MATHEMATICS
Pierre Aime Feulefack , Emmanuel Wend-Benedo Zongo
{"title":"非局部诺伊曼条件下非线性(p,q)分数阶拉普拉斯算子的特征值","authors":"Pierre Aime Feulefack ,&nbsp;Emmanuel Wend-Benedo Zongo","doi":"10.1016/j.na.2025.113949","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate on a bounded open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with smooth boundary, an eigenvalue problem involving a sum of nonlocal operators <span><math><mrow><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>+</mo><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup></mrow></math></span> with <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> and subject to the corresponding homogeneous nonlocal <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-Neumann boundary condition. A careful analysis of the considered problem leads us to a complete description of the set of eigenvalues as being the precise interval <span><math><mrow><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>∪</mo><mrow><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> is the first nonzero eigenvalue of the homogeneous fractional <span><math><mi>q</mi></math></span>-Laplacian under nonlocal <span><math><mi>q</mi></math></span>-Neumann boundary condition. Due to the nonlocal feature of the operators appearing in the equations, some purely nonlocal situations occur and bring in a difference in the study of nonlocal problems compared to local ones. Furthermore, we establish that every eigenfunctions is globally bounded.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113949"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenvalues of nonlinear (p,q)-fractional Laplace operator under nonlocal Neumann conditions\",\"authors\":\"Pierre Aime Feulefack ,&nbsp;Emmanuel Wend-Benedo Zongo\",\"doi\":\"10.1016/j.na.2025.113949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate on a bounded open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with smooth boundary, an eigenvalue problem involving a sum of nonlocal operators <span><math><mrow><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>+</mo><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup></mrow></math></span> with <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> and subject to the corresponding homogeneous nonlocal <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-Neumann boundary condition. A careful analysis of the considered problem leads us to a complete description of the set of eigenvalues as being the precise interval <span><math><mrow><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>∪</mo><mrow><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> is the first nonzero eigenvalue of the homogeneous fractional <span><math><mi>q</mi></math></span>-Laplacian under nonlocal <span><math><mi>q</mi></math></span>-Neumann boundary condition. Due to the nonlocal feature of the operators appearing in the equations, some purely nonlocal situations occur and bring in a difference in the study of nonlocal problems compared to local ones. Furthermore, we establish that every eigenfunctions is globally bounded.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113949\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25002019\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在光滑边界的有界开集RN上,研究了一个涉及非局部算子(−Δ)ps1+(−Δ)qs2的和的特征值问题,其中s1,s2∈(0,1),p,q∈(1,∞),并满足相应的齐次非局部(p,q)-Neumann边界条件。通过对所考虑问题的仔细分析,我们得到了特征值集是精确区间{0}∪(λ1(s2,q),∞)的完整描述,其中λ1(s2,q)是齐次分数阶q- laplace在非局部q- neumann边界条件下的第一个非零特征值。由于方程中出现的算子的非局部特性,导致了一些纯非局部情况的出现,使得非局部问题的研究与局部问题的研究有了很大的不同。进一步证明了每个特征函数是全局有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvalues of nonlinear (p,q)-fractional Laplace operator under nonlocal Neumann conditions
In this paper, we investigate on a bounded open set of RN with smooth boundary, an eigenvalue problem involving a sum of nonlocal operators (Δ)ps1+(Δ)qs2 with s1,s2(0,1), p,q(1,) and subject to the corresponding homogeneous nonlocal (p,q)-Neumann boundary condition. A careful analysis of the considered problem leads us to a complete description of the set of eigenvalues as being the precise interval {0}(λ1(s2,q),), where λ1(s2,q) is the first nonzero eigenvalue of the homogeneous fractional q-Laplacian under nonlocal q-Neumann boundary condition. Due to the nonlocal feature of the operators appearing in the equations, some purely nonlocal situations occur and bring in a difference in the study of nonlocal problems compared to local ones. Furthermore, we establish that every eigenfunctions is globally bounded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信