保守理想MHD方程的全局无散度熵稳定节点DG方法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yuchang Liu , Wei Guo , Yan Jiang , Mengping Zhang
{"title":"保守理想MHD方程的全局无散度熵稳定节点DG方法","authors":"Yuchang Liu ,&nbsp;Wei Guo ,&nbsp;Yan Jiang ,&nbsp;Mengping Zhang","doi":"10.1016/j.jcp.2025.114382","DOIUrl":null,"url":null,"abstract":"<div><div>We propose an arbitrarily high-order globally divergence-free entropy stable nodal discontinuous Galerkin (DG) method to directly solve the conservative form of the ideal MHD equations using appropriate quadrature rules on Cartesian meshes. The method ensures a globally divergence-free magnetic field by updating it at interfaces with a constraint-preserving formulation [8] and employing a novel least-squares reconstruction technique. Leveraging this property, the semi-discrete nodal DG scheme is proven to be entropy stable. To handle the problems with strong shocks, we introduce a novel limiting strategy that suppresses unphysical oscillations while preserving the globally divergence-free property. Numerical experiments verify the accuracy and efficacy of our method.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"543 ","pages":"Article 114382"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A globally divergence-free entropy stable nodal DG method for conservative ideal MHD equations\",\"authors\":\"Yuchang Liu ,&nbsp;Wei Guo ,&nbsp;Yan Jiang ,&nbsp;Mengping Zhang\",\"doi\":\"10.1016/j.jcp.2025.114382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose an arbitrarily high-order globally divergence-free entropy stable nodal discontinuous Galerkin (DG) method to directly solve the conservative form of the ideal MHD equations using appropriate quadrature rules on Cartesian meshes. The method ensures a globally divergence-free magnetic field by updating it at interfaces with a constraint-preserving formulation [8] and employing a novel least-squares reconstruction technique. Leveraging this property, the semi-discrete nodal DG scheme is proven to be entropy stable. To handle the problems with strong shocks, we introduce a novel limiting strategy that suppresses unphysical oscillations while preserving the globally divergence-free property. Numerical experiments verify the accuracy and efficacy of our method.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"543 \",\"pages\":\"Article 114382\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125006643\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006643","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种任意高阶全局无散度熵稳定节点不连续伽辽金(DG)方法,利用适当的正交规则直接求解理想MHD方程的保守形式。该方法利用约束保持公式[8]和新颖的最小二乘重构技术对界面磁场进行更新,保证了全局无发散磁场。利用这一性质,证明了半离散节点DG格式是熵稳定的。为了处理强冲击问题,我们引入了一种新的限制策略,在保持全局无发散性的同时抑制非物理振荡。数值实验验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A globally divergence-free entropy stable nodal DG method for conservative ideal MHD equations
We propose an arbitrarily high-order globally divergence-free entropy stable nodal discontinuous Galerkin (DG) method to directly solve the conservative form of the ideal MHD equations using appropriate quadrature rules on Cartesian meshes. The method ensures a globally divergence-free magnetic field by updating it at interfaces with a constraint-preserving formulation [8] and employing a novel least-squares reconstruction technique. Leveraging this property, the semi-discrete nodal DG scheme is proven to be entropy stable. To handle the problems with strong shocks, we introduce a novel limiting strategy that suppresses unphysical oscillations while preserving the globally divergence-free property. Numerical experiments verify the accuracy and efficacy of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信