确定性子空间干扰下的超对称自适应检测器设计

IF 3.6 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Peiqin Tang , Yuanyuan Jiang , Jinfang Wen , Can Huang , Weijian Liu , Jun Liu
{"title":"确定性子空间干扰下的超对称自适应检测器设计","authors":"Peiqin Tang ,&nbsp;Yuanyuan Jiang ,&nbsp;Jinfang Wen ,&nbsp;Can Huang ,&nbsp;Weijian Liu ,&nbsp;Jun Liu","doi":"10.1016/j.sigpro.2025.110311","DOIUrl":null,"url":null,"abstract":"<div><div>In the adaptive detection process of target signal under interference and Gaussian clutter, the issue of insufficient training samples often degrades the performance of detectors. To this end, we exploit the persymmetry of clutter covariance matrix to enhance the detection performance. The interference and target signal are described as subspace models, namely, it is assumed to lie in different deterministic subspaces, but with unknown coordinates. Above that, two persymmetric adaptive detectors are designed resorting to the Gradient and Durbin criteria, respectively. Numerical Monte Carlo experimental examples indicate that these persymmetric detectors exhibit superior performance to existing counterparts in some scenarios and possess the constant false alarm rate (CFAR) property.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110311"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Persymmetric adaptive detectors design in the presence of deterministic subspace interference\",\"authors\":\"Peiqin Tang ,&nbsp;Yuanyuan Jiang ,&nbsp;Jinfang Wen ,&nbsp;Can Huang ,&nbsp;Weijian Liu ,&nbsp;Jun Liu\",\"doi\":\"10.1016/j.sigpro.2025.110311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the adaptive detection process of target signal under interference and Gaussian clutter, the issue of insufficient training samples often degrades the performance of detectors. To this end, we exploit the persymmetry of clutter covariance matrix to enhance the detection performance. The interference and target signal are described as subspace models, namely, it is assumed to lie in different deterministic subspaces, but with unknown coordinates. Above that, two persymmetric adaptive detectors are designed resorting to the Gradient and Durbin criteria, respectively. Numerical Monte Carlo experimental examples indicate that these persymmetric detectors exhibit superior performance to existing counterparts in some scenarios and possess the constant false alarm rate (CFAR) property.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"239 \",\"pages\":\"Article 110311\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425004256\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425004256","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在干扰和高斯杂波下的目标信号自适应检测过程中,训练样本不足的问题往往会降低检测器的性能。为此,我们利用杂波协方差矩阵的超对称性来提高检测性能。将干扰信号和目标信号描述为子空间模型,即假设它们位于不同的确定性子空间,但坐标未知。在此基础上,分别采用梯度准则和Durbin准则设计了两个超对称自适应检测器。数值蒙特卡罗实验表明,这些超对称检测器在某些情况下表现出优于现有同类检测器的性能,并具有恒定的虚警率(CFAR)特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persymmetric adaptive detectors design in the presence of deterministic subspace interference
In the adaptive detection process of target signal under interference and Gaussian clutter, the issue of insufficient training samples often degrades the performance of detectors. To this end, we exploit the persymmetry of clutter covariance matrix to enhance the detection performance. The interference and target signal are described as subspace models, namely, it is assumed to lie in different deterministic subspaces, but with unknown coordinates. Above that, two persymmetric adaptive detectors are designed resorting to the Gradient and Durbin criteria, respectively. Numerical Monte Carlo experimental examples indicate that these persymmetric detectors exhibit superior performance to existing counterparts in some scenarios and possess the constant false alarm rate (CFAR) property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信