单型λ微积分中λβ约简的证明理论研究

IF 0.6 2区 数学 Q2 LOGIC
William Stirton
{"title":"单型λ微积分中λβ约简的证明理论研究","authors":"William Stirton","doi":"10.1016/j.apal.2025.103657","DOIUrl":null,"url":null,"abstract":"<div><div>The paper defines a function <em>f</em> from simply typed <em>λ</em>-terms to natural numbers and proves that, if <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is a simply typed <em>λ</em>-term formed by contracting an arbitrary <em>λβ</em>-redex within another term <em>M</em>, then <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>&lt;</mo><mi>f</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span>. Unlike previous proofs of similar theorems, the redex contracted may be completely arbitrary, i.e. without any restriction on rule (<em>ξ</em>). The function <em>f</em> itself is related to, and no more computationally difficult than, a similar-looking function defined in Schütte's <em>Proof Theory</em> (1977).</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"177 1","pages":"Article 103657"},"PeriodicalIF":0.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof-theoretic investigation of λβ-reduction in the simply typed λ-calculus\",\"authors\":\"William Stirton\",\"doi\":\"10.1016/j.apal.2025.103657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper defines a function <em>f</em> from simply typed <em>λ</em>-terms to natural numbers and proves that, if <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is a simply typed <em>λ</em>-term formed by contracting an arbitrary <em>λβ</em>-redex within another term <em>M</em>, then <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>&lt;</mo><mi>f</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span>. Unlike previous proofs of similar theorems, the redex contracted may be completely arbitrary, i.e. without any restriction on rule (<em>ξ</em>). The function <em>f</em> itself is related to, and no more computationally difficult than, a similar-looking function defined in Schütte's <em>Proof Theory</em> (1977).</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"177 1\",\"pages\":\"Article 103657\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016800722500106X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722500106X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了一个由单型λ项到自然数的函数f,并证明了,如果M是由任意λβ-索引缩并到另一项M内形成的单型λ项,则f(M) <f(M)。与之前类似定理的证明不同,收缩的索引可以是完全任意的,即不受规则(ξ)的任何限制。函数f本身与sch特的证明理论(1977)中定义的一个类似的函数相关,并且在计算上并不困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof-theoretic investigation of λβ-reduction in the simply typed λ-calculus
The paper defines a function f from simply typed λ-terms to natural numbers and proves that, if M is a simply typed λ-term formed by contracting an arbitrary λβ-redex within another term M, then f(M)<f(M). Unlike previous proofs of similar theorems, the redex contracted may be completely arbitrary, i.e. without any restriction on rule (ξ). The function f itself is related to, and no more computationally difficult than, a similar-looking function defined in Schütte's Proof Theory (1977).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信