函数多项式分位数回归预测的统计分析

IF 1.8 2区 数学 Q1 MATHEMATICS
Hongzhi Tong
{"title":"函数多项式分位数回归预测的统计分析","authors":"Hongzhi Tong","doi":"10.1016/j.jco.2025.101995","DOIUrl":null,"url":null,"abstract":"<div><div>We consider in this paper the quantile regression in a functional polynomial model, where the conditional quantile of a scalar response is modeled by a polynomial of functional predictor. It extends beyond the standard functional linear setting to accommodate more general functional polynomial model. A Tikhonov regularized functional polynomial quantile regression approach is introduced and investigated. By utilizing some techniques of empirical processes, we establish the explicit convergence rates of the prediction error of the proposed estimator under mild assumptions.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101995"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis of prediction in functional polynomial quantile regression\",\"authors\":\"Hongzhi Tong\",\"doi\":\"10.1016/j.jco.2025.101995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider in this paper the quantile regression in a functional polynomial model, where the conditional quantile of a scalar response is modeled by a polynomial of functional predictor. It extends beyond the standard functional linear setting to accommodate more general functional polynomial model. A Tikhonov regularized functional polynomial quantile regression approach is introduced and investigated. By utilizing some techniques of empirical processes, we establish the explicit convergence rates of the prediction error of the proposed estimator under mild assumptions.</div></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"92 \",\"pages\":\"Article 101995\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X25000731\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000731","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑一个泛函多项式模型中的分位数回归,其中标量响应的条件分位数是用一个泛函预测器的多项式来建模的。它超越了标准的函数线性设置,以适应更一般的函数多项式模型。介绍并研究了一种吉洪诺夫正则泛函多项式分位数回归方法。利用经验过程的一些技巧,我们建立了在温和假设下所提出的估计量的预测误差的显式收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical analysis of prediction in functional polynomial quantile regression
We consider in this paper the quantile regression in a functional polynomial model, where the conditional quantile of a scalar response is modeled by a polynomial of functional predictor. It extends beyond the standard functional linear setting to accommodate more general functional polynomial model. A Tikhonov regularized functional polynomial quantile regression approach is introduced and investigated. By utilizing some techniques of empirical processes, we establish the explicit convergence rates of the prediction error of the proposed estimator under mild assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信