{"title":"罗丹明6G染料包覆纳米煤粉煤灰纳米复合材料的制备:新型指纹潜行检测法医学粉末","authors":"Eswaran Prabakaran, Kriveshini Pillay","doi":"10.1016/j.adna.2025.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports on a novel powder-based rhodamine 6G dye coated nano-coal fly ash (Rh6G/nano-CFA) nanocomposite that was used in a powder dusting technique to develop latent fingerprint (LFP) images under day light conditions. Several instrumental methods, including UV–visible spectroscopy (UV), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS) were used to characterize the Rh6G/nano-CFA nanocomposite. In order to enhance the established latent fingerprint detection on a variety of porous and non-porous substrates using the powder dusting approach in daylight conditions, Rh6G dye was loaded onto the nano-CFA. According to the data, clear LFPs images with ridge patterns in levels 2 and 3 were examined for personal identification using Rh6G/nano-CFA nanocomposite powder with powder dusting technique on a variety of substrates, including aluminum foil, glass slides, tiles, paper money, plastic bottles and tin cans. Aged LFPs images were also effectively developed using this Rh6G/nano-CFA nanocomposite on the aluminum foil substrate with minimal background contrast. Thus, the Rh6G/nano-CFA nanocomposite demonstrated that its excellent contrast and high sensitivity made it a promising powder for use in practical forensic science applications.</div></div>","PeriodicalId":100034,"journal":{"name":"Advanced Nanocomposites","volume":"2 ","pages":"Pages 205-216"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of rhodamine 6G dye coated nano-coal fly ash nanocomposite: Novel forensic powder for latent fingerprint detection\",\"authors\":\"Eswaran Prabakaran, Kriveshini Pillay\",\"doi\":\"10.1016/j.adna.2025.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reports on a novel powder-based rhodamine 6G dye coated nano-coal fly ash (Rh6G/nano-CFA) nanocomposite that was used in a powder dusting technique to develop latent fingerprint (LFP) images under day light conditions. Several instrumental methods, including UV–visible spectroscopy (UV), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS) were used to characterize the Rh6G/nano-CFA nanocomposite. In order to enhance the established latent fingerprint detection on a variety of porous and non-porous substrates using the powder dusting approach in daylight conditions, Rh6G dye was loaded onto the nano-CFA. According to the data, clear LFPs images with ridge patterns in levels 2 and 3 were examined for personal identification using Rh6G/nano-CFA nanocomposite powder with powder dusting technique on a variety of substrates, including aluminum foil, glass slides, tiles, paper money, plastic bottles and tin cans. Aged LFPs images were also effectively developed using this Rh6G/nano-CFA nanocomposite on the aluminum foil substrate with minimal background contrast. Thus, the Rh6G/nano-CFA nanocomposite demonstrated that its excellent contrast and high sensitivity made it a promising powder for use in practical forensic science applications.</div></div>\",\"PeriodicalId\":100034,\"journal\":{\"name\":\"Advanced Nanocomposites\",\"volume\":\"2 \",\"pages\":\"Pages 205-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanocomposites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949944525000036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanocomposites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949944525000036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of rhodamine 6G dye coated nano-coal fly ash nanocomposite: Novel forensic powder for latent fingerprint detection
This study reports on a novel powder-based rhodamine 6G dye coated nano-coal fly ash (Rh6G/nano-CFA) nanocomposite that was used in a powder dusting technique to develop latent fingerprint (LFP) images under day light conditions. Several instrumental methods, including UV–visible spectroscopy (UV), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS) were used to characterize the Rh6G/nano-CFA nanocomposite. In order to enhance the established latent fingerprint detection on a variety of porous and non-porous substrates using the powder dusting approach in daylight conditions, Rh6G dye was loaded onto the nano-CFA. According to the data, clear LFPs images with ridge patterns in levels 2 and 3 were examined for personal identification using Rh6G/nano-CFA nanocomposite powder with powder dusting technique on a variety of substrates, including aluminum foil, glass slides, tiles, paper money, plastic bottles and tin cans. Aged LFPs images were also effectively developed using this Rh6G/nano-CFA nanocomposite on the aluminum foil substrate with minimal background contrast. Thus, the Rh6G/nano-CFA nanocomposite demonstrated that its excellent contrast and high sensitivity made it a promising powder for use in practical forensic science applications.