DVC2:视频结构的深度视频级联聚类

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zihua Wang , Siya Mi , Yu Zhang
{"title":"DVC2:视频结构的深度视频级联聚类","authors":"Zihua Wang ,&nbsp;Siya Mi ,&nbsp;Yu Zhang","doi":"10.1016/j.neucom.2025.131565","DOIUrl":null,"url":null,"abstract":"<div><div>Video clustering is a critical unsupervised learning task, where category labels are unavailable, unlike in supervised video classification. The primary challenge is learning meaningful video representations without annotations to effectively group similar videos. Most existing methods extract frame-level features and apply standard clustering algorithms such as K-means, but they often fail to capture temporal relationships inherent in video data. In this paper, we introduce Deep Video Cascade Clustering (<span><math><msup><mtext>DVC</mtext><mn>2</mn></msup></math></span>), a novel unsupervised video learning paradigm. Unlike image-based clustering methods, <span><math><msup><mtext>DVC</mtext><mn>2</mn></msup></math></span> first learns an initial video representation through frame clustering, which serves as guidance, and then aligns video clustering results with both long-term and short-term structures as well as nearest neighbors. We evaluate <span><math><msup><mtext>DVC</mtext><mn>2</mn></msup></math></span> on benchmark datasets, including UCF101 and Kinetics-400, achieving state-of-the-art results. Notably, even in annotation-free scenarios where self-supervised learning with K-means already yields reasonable clustering, <span><math><msup><mtext>DVC</mtext><mn>2</mn></msup></math></span> demonstrates significantly superior performance.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131565"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DVC2: Deep video cascade clustering from video structures\",\"authors\":\"Zihua Wang ,&nbsp;Siya Mi ,&nbsp;Yu Zhang\",\"doi\":\"10.1016/j.neucom.2025.131565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Video clustering is a critical unsupervised learning task, where category labels are unavailable, unlike in supervised video classification. The primary challenge is learning meaningful video representations without annotations to effectively group similar videos. Most existing methods extract frame-level features and apply standard clustering algorithms such as K-means, but they often fail to capture temporal relationships inherent in video data. In this paper, we introduce Deep Video Cascade Clustering (<span><math><msup><mtext>DVC</mtext><mn>2</mn></msup></math></span>), a novel unsupervised video learning paradigm. Unlike image-based clustering methods, <span><math><msup><mtext>DVC</mtext><mn>2</mn></msup></math></span> first learns an initial video representation through frame clustering, which serves as guidance, and then aligns video clustering results with both long-term and short-term structures as well as nearest neighbors. We evaluate <span><math><msup><mtext>DVC</mtext><mn>2</mn></msup></math></span> on benchmark datasets, including UCF101 and Kinetics-400, achieving state-of-the-art results. Notably, even in annotation-free scenarios where self-supervised learning with K-means already yields reasonable clustering, <span><math><msup><mtext>DVC</mtext><mn>2</mn></msup></math></span> demonstrates significantly superior performance.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"657 \",\"pages\":\"Article 131565\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225022374\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022374","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

视频聚类是一项关键的无监督学习任务,与有监督视频分类不同,视频聚类的分类标签是不可用的。主要的挑战是在没有注释的情况下学习有意义的视频表示,从而有效地对相似的视频进行分组。大多数现有方法提取帧级特征并应用标准聚类算法(如K-means),但它们往往无法捕获视频数据中固有的时间关系。在本文中,我们介绍了深度视频级联聚类(DVC2),一种新的无监督视频学习范式。与基于图像的聚类方法不同,DVC2首先通过帧聚类学习初始视频表示,帧聚类作为指导,然后将视频聚类结果与长期和短期结构以及最近邻居进行对齐。我们在基准数据集(包括UCF101和Kinetics-400)上评估DVC2,获得了最先进的结果。值得注意的是,即使在无注释的场景中,使用K-means的自监督学习已经产生了合理的聚类,DVC2也表现出了明显优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DVC2: Deep video cascade clustering from video structures
Video clustering is a critical unsupervised learning task, where category labels are unavailable, unlike in supervised video classification. The primary challenge is learning meaningful video representations without annotations to effectively group similar videos. Most existing methods extract frame-level features and apply standard clustering algorithms such as K-means, but they often fail to capture temporal relationships inherent in video data. In this paper, we introduce Deep Video Cascade Clustering (DVC2), a novel unsupervised video learning paradigm. Unlike image-based clustering methods, DVC2 first learns an initial video representation through frame clustering, which serves as guidance, and then aligns video clustering results with both long-term and short-term structures as well as nearest neighbors. We evaluate DVC2 on benchmark datasets, including UCF101 and Kinetics-400, achieving state-of-the-art results. Notably, even in annotation-free scenarios where self-supervised learning with K-means already yields reasonable clustering, DVC2 demonstrates significantly superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信