具有时滞和lsamvy噪声的随机偏微分系统的边界控制

IF 4.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
K. Mathiyalagan , N. Soundarya Lakshmi , Yong-Ki Ma , Xiao-Heng Chang
{"title":"具有时滞和lsamvy噪声的随机偏微分系统的边界控制","authors":"K. Mathiyalagan ,&nbsp;N. Soundarya Lakshmi ,&nbsp;Yong-Ki Ma ,&nbsp;Xiao-Heng Chang","doi":"10.1016/j.jfranklin.2025.108055","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the backstepping-based boundary control approach for stabilizing the semi-linear parabolic reaction-diffusion stochastic delayed partial differential system (SDPDS) driven by Lévy noise. The invertible Volterra integral transformation is chosen for transforming the original system to the target system. Boundary control for SDPDS is designed by finding the solution of PDE involving the kernel function with the help of method of successive approximation. By <span><math><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></math></span> dissipative theory and linear matrix inequalities (LMIs), sufficient conditions are derived for proving the decreasing nature of the Lyapunov function for the target system. The result shows the system’s asymptotical stability under Neumann boundary conditions, further the stability of the target system proves the stability of the original system with control as our transformation is invertible. Finally, the proposed results are numerically validated.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 16","pages":"Article 108055"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary control of stochastic partial differential systems with delays and Lévy noise\",\"authors\":\"K. Mathiyalagan ,&nbsp;N. Soundarya Lakshmi ,&nbsp;Yong-Ki Ma ,&nbsp;Xiao-Heng Chang\",\"doi\":\"10.1016/j.jfranklin.2025.108055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the backstepping-based boundary control approach for stabilizing the semi-linear parabolic reaction-diffusion stochastic delayed partial differential system (SDPDS) driven by Lévy noise. The invertible Volterra integral transformation is chosen for transforming the original system to the target system. Boundary control for SDPDS is designed by finding the solution of PDE involving the kernel function with the help of method of successive approximation. By <span><math><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></math></span> dissipative theory and linear matrix inequalities (LMIs), sufficient conditions are derived for proving the decreasing nature of the Lyapunov function for the target system. The result shows the system’s asymptotical stability under Neumann boundary conditions, further the stability of the target system proves the stability of the original system with control as our transformation is invertible. Finally, the proposed results are numerically validated.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"362 16\",\"pages\":\"Article 108055\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003225005472\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225005472","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了由lsamvy噪声驱动的半线性抛物型反应扩散随机时滞偏微分系统(SDPDS)的边界控制方法。将原系统转化为目标系统,采用可逆Volterra积分变换。利用逐次逼近法求解涉及核函数的偏微分方程,设计了SDPDS的边界控制。利用(Q,S,R)耗散理论和线性矩阵不等式,给出了证明目标系统Lyapunov函数的递减性质的充分条件。结果表明了系统在Neumann边界条件下的渐近稳定性,进一步证明了目标系统在控制下的稳定性,因为我们的变换是可逆的。最后,对所提结果进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary control of stochastic partial differential systems with delays and Lévy noise
This paper investigates the backstepping-based boundary control approach for stabilizing the semi-linear parabolic reaction-diffusion stochastic delayed partial differential system (SDPDS) driven by Lévy noise. The invertible Volterra integral transformation is chosen for transforming the original system to the target system. Boundary control for SDPDS is designed by finding the solution of PDE involving the kernel function with the help of method of successive approximation. By (Q,S,R) dissipative theory and linear matrix inequalities (LMIs), sufficient conditions are derived for proving the decreasing nature of the Lyapunov function for the target system. The result shows the system’s asymptotical stability under Neumann boundary conditions, further the stability of the target system proves the stability of the original system with control as our transformation is invertible. Finally, the proposed results are numerically validated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信