整数值多重分形过程

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Danijel Grahovac
{"title":"整数值多重分形过程","authors":"Danijel Grahovac","doi":"10.1016/j.chaos.2025.117277","DOIUrl":null,"url":null,"abstract":"<div><div>Multifractal scaling has been extensively studied for real-valued stochastic processes, but a systematic integer-valued analogue has remained largely unexplored. In this work, we introduce a multifractal framework for integer-valued processes using the thinning operation, which serves as a natural discrete counterpart to scalar multiplication. Within this framework, we construct integer-valued multifractal processes by time changing compound Poisson processes with nondecreasing multifractal clocks. We derive the scaling laws of their moments, provide explicit examples, and illustrate the results through numerical simulations. This construction integrates multifractal concepts into point process theory, enabling analysis of nonlinear discrete stochastic systems with nontrivial scaling properties.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117277"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integer-valued multifractal processes\",\"authors\":\"Danijel Grahovac\",\"doi\":\"10.1016/j.chaos.2025.117277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multifractal scaling has been extensively studied for real-valued stochastic processes, but a systematic integer-valued analogue has remained largely unexplored. In this work, we introduce a multifractal framework for integer-valued processes using the thinning operation, which serves as a natural discrete counterpart to scalar multiplication. Within this framework, we construct integer-valued multifractal processes by time changing compound Poisson processes with nondecreasing multifractal clocks. We derive the scaling laws of their moments, provide explicit examples, and illustrate the results through numerical simulations. This construction integrates multifractal concepts into point process theory, enabling analysis of nonlinear discrete stochastic systems with nontrivial scaling properties.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117277\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925012901\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925012901","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对于实值随机过程的多重分形标度已经进行了广泛的研究,但是系统的整数值模拟仍然在很大程度上未被探索。在这项工作中,我们引入了整数值过程的多重分形框架,使用细化操作,作为标量乘法的自然离散对应物。在此框架内,我们利用非递减多重分形时钟的时变复合泊松过程构造了整数多重分形过程。我们推导了它们的矩的标度规律,给出了明确的例子,并通过数值模拟说明了结果。该结构将多重分形概念集成到点过程理论中,使具有非平凡标度特性的非线性离散随机系统能够进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integer-valued multifractal processes
Multifractal scaling has been extensively studied for real-valued stochastic processes, but a systematic integer-valued analogue has remained largely unexplored. In this work, we introduce a multifractal framework for integer-valued processes using the thinning operation, which serves as a natural discrete counterpart to scalar multiplication. Within this framework, we construct integer-valued multifractal processes by time changing compound Poisson processes with nondecreasing multifractal clocks. We derive the scaling laws of their moments, provide explicit examples, and illustrate the results through numerical simulations. This construction integrates multifractal concepts into point process theory, enabling analysis of nonlinear discrete stochastic systems with nontrivial scaling properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信