Fabrizio Angiulli, Fabio Fassetti, Simona Nisticò, Luigi Palopoli
{"title":"为揭示绿色比较优势的关键方面解释不断变化的异常值","authors":"Fabrizio Angiulli, Fabio Fassetti, Simona Nisticò, Luigi Palopoli","doi":"10.1016/j.array.2025.100518","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the outlier explanation problem, where the goal is to find a justification explaining what makes a known outlier different from the remaining data samples. To perform this task, we propose transformation-based explanations, which are a new kind of explanations we have recently defined (Angiulli et al., 2023) that, compared to other explanation types found in the literature, provide richer insights into the explanation task at hand, allowing decision-makers to take more informed actions. However, in several interesting application cases, decision-makers are required to analyse evolving scenarios, so that the <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><mtext>OE</mtext></mrow></math></span> method (Angiulli et al., 2024) we had proposed cannot be directly exploited.</div><div>Therefore, in this paper, an extension of the <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><mtext>OE</mtext></mrow></math></span> method, called <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mtext>OE</mtext></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span>, is presented that constructs transformation-based explanations in evolving data scenarios. Moreover, we consider the application of the <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mtext>OE</mtext></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> method to real-world environmental data. In particular, to test the effectiveness of <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mtext>OE</mtext></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> in providing useful and actionable results within evolving data contexts, we gathered data concerning seven indicators related to the comparative advantage of low-carbon technologies in the 2016–2017, 2018–2019 and 2020–2021 time periods, and reshaped them in the Evolution of Green Comparative Advantage (<span><math><mtext>evGreenCA</mtext></math></span>) data collection. Then, we applied <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mtext>OE</mtext></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> onto this data collection to quantitatively and qualitatively assess the interestingness of explanations it provides to decision makers in the considered application scenario.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"28 ","pages":"Article 100518"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explaining evolving outliers for uncovering key aspects of the green comparative advantage\",\"authors\":\"Fabrizio Angiulli, Fabio Fassetti, Simona Nisticò, Luigi Palopoli\",\"doi\":\"10.1016/j.array.2025.100518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with the outlier explanation problem, where the goal is to find a justification explaining what makes a known outlier different from the remaining data samples. To perform this task, we propose transformation-based explanations, which are a new kind of explanations we have recently defined (Angiulli et al., 2023) that, compared to other explanation types found in the literature, provide richer insights into the explanation task at hand, allowing decision-makers to take more informed actions. However, in several interesting application cases, decision-makers are required to analyse evolving scenarios, so that the <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><mtext>OE</mtext></mrow></math></span> method (Angiulli et al., 2024) we had proposed cannot be directly exploited.</div><div>Therefore, in this paper, an extension of the <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><mtext>OE</mtext></mrow></math></span> method, called <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mtext>OE</mtext></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span>, is presented that constructs transformation-based explanations in evolving data scenarios. Moreover, we consider the application of the <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mtext>OE</mtext></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> method to real-world environmental data. In particular, to test the effectiveness of <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mtext>OE</mtext></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> in providing useful and actionable results within evolving data contexts, we gathered data concerning seven indicators related to the comparative advantage of low-carbon technologies in the 2016–2017, 2018–2019 and 2020–2021 time periods, and reshaped them in the Evolution of Green Comparative Advantage (<span><math><mtext>evGreenCA</mtext></math></span>) data collection. Then, we applied <span><math><mrow><msup><mrow><mtext>M</mtext></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mtext>OE</mtext></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> onto this data collection to quantitatively and qualitatively assess the interestingness of explanations it provides to decision makers in the considered application scenario.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"28 \",\"pages\":\"Article 100518\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005625001456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625001456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
本文处理离群值解释问题,其目标是找到解释什么使已知的离群值与剩余数据样本不同的理由。为了完成这项任务,我们提出了基于转换的解释,这是我们最近定义的一种新的解释(Angiulli et al., 2023),与文献中发现的其他解释类型相比,它为手头的解释任务提供了更丰富的见解,使决策者能够采取更明智的行动。然而,在一些有趣的应用案例中,决策者需要分析不断变化的场景,因此我们提出的M2OE方法(Angiulli et al., 2024)不能直接利用。因此,本文提出了一种M2OE方法的扩展,称为M2OEe,用于在不断变化的数据场景中构建基于转换的解释。此外,我们考虑了M2OEe方法在现实环境数据中的应用。特别是,为了验证M2OEe在不断变化的数据背景下提供有用和可操作结果的有效性,我们收集了2016-2017年、2018-2019年和2020-2021年期间与低碳技术比较优势相关的七个指标的数据,并在绿色比较优势演变(evGreenCA)数据收集中对其进行了重塑。然后,我们将M2OEe应用于该数据集,以定量和定性地评估它在考虑的应用场景中为决策者提供的解释的有趣性。
Explaining evolving outliers for uncovering key aspects of the green comparative advantage
This paper deals with the outlier explanation problem, where the goal is to find a justification explaining what makes a known outlier different from the remaining data samples. To perform this task, we propose transformation-based explanations, which are a new kind of explanations we have recently defined (Angiulli et al., 2023) that, compared to other explanation types found in the literature, provide richer insights into the explanation task at hand, allowing decision-makers to take more informed actions. However, in several interesting application cases, decision-makers are required to analyse evolving scenarios, so that the method (Angiulli et al., 2024) we had proposed cannot be directly exploited.
Therefore, in this paper, an extension of the method, called , is presented that constructs transformation-based explanations in evolving data scenarios. Moreover, we consider the application of the method to real-world environmental data. In particular, to test the effectiveness of in providing useful and actionable results within evolving data contexts, we gathered data concerning seven indicators related to the comparative advantage of low-carbon technologies in the 2016–2017, 2018–2019 and 2020–2021 time periods, and reshaped them in the Evolution of Green Comparative Advantage () data collection. Then, we applied onto this data collection to quantitatively and qualitatively assess the interestingness of explanations it provides to decision makers in the considered application scenario.