共形米卡尔透镜用于弯曲波自聚焦、弯曲、无衍射塔尔博特效应、减振和能量收集

IF 4.9 2区 工程技术 Q1 ACOUSTICS
Zhaoyong Sun , Haoran Xu , Yanping Du , Chunlin Li , Yongquan Liu , Liuxian Zhao , Jun Yang
{"title":"共形米卡尔透镜用于弯曲波自聚焦、弯曲、无衍射塔尔博特效应、减振和能量收集","authors":"Zhaoyong Sun ,&nbsp;Haoran Xu ,&nbsp;Yanping Du ,&nbsp;Chunlin Li ,&nbsp;Yongquan Liu ,&nbsp;Liuxian Zhao ,&nbsp;Jun Yang","doi":"10.1016/j.jsv.2025.119464","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employ conformal transformation methodology to design an arc-shaped flexural Mikaelian lens — hereafter termed the Conformal Mikaelian Lens (CML). The lens’s graded refractive index profile is engineered through coordinate transformation of conventional Mikaelian lens parameters into polar space. Beyond geometric transformation, we interpret the CML as an effective Riemannian space and analyze wave propagation along geodesic trajectories, which enables broadband conformal self-focusing and controllable wavefront bending. Numerical simulations and experimental results consistently demonstrate that the lens supports broadband flexural wave self-focusing and stable wavefront bending. Within this framework, we discover a conformal Talbot effect, in which periodic wavefronts exhibit shifted and non-uniformly scaled self-images due to curvature-induced metric distortion. Furthermore, leveraging the lens’s intrinsic self-focusing effect, the CML enables broadband vibration suppression and efficient energy harvesting, as confirmed by experimental results. This work establishes a theoretical and experimental foundation for multifunctional applications such as wave steering, sensing, energy conversion, and vibration control in curved flexural systems.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"621 ","pages":"Article 119464"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal Mikaelian lens for flexural wave self-focusing, bending, non-diffraction Talbot effects, vibration reduction and energy harvesting\",\"authors\":\"Zhaoyong Sun ,&nbsp;Haoran Xu ,&nbsp;Yanping Du ,&nbsp;Chunlin Li ,&nbsp;Yongquan Liu ,&nbsp;Liuxian Zhao ,&nbsp;Jun Yang\",\"doi\":\"10.1016/j.jsv.2025.119464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we employ conformal transformation methodology to design an arc-shaped flexural Mikaelian lens — hereafter termed the Conformal Mikaelian Lens (CML). The lens’s graded refractive index profile is engineered through coordinate transformation of conventional Mikaelian lens parameters into polar space. Beyond geometric transformation, we interpret the CML as an effective Riemannian space and analyze wave propagation along geodesic trajectories, which enables broadband conformal self-focusing and controllable wavefront bending. Numerical simulations and experimental results consistently demonstrate that the lens supports broadband flexural wave self-focusing and stable wavefront bending. Within this framework, we discover a conformal Talbot effect, in which periodic wavefronts exhibit shifted and non-uniformly scaled self-images due to curvature-induced metric distortion. Furthermore, leveraging the lens’s intrinsic self-focusing effect, the CML enables broadband vibration suppression and efficient energy harvesting, as confirmed by experimental results. This work establishes a theoretical and experimental foundation for multifunctional applications such as wave steering, sensing, energy conversion, and vibration control in curved flexural systems.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"621 \",\"pages\":\"Article 119464\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X25005371\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25005371","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们采用保形变换方法设计了一种弧形弯曲米凯尔透镜-以下称为保形米凯尔透镜(CML)。该透镜的渐变折射率分布是通过将传统的米凯尔廉透镜参数坐标变换到极空间来实现的。除了几何变换,我们将CML解释为有效的黎曼空间,并分析了波沿测地线轨迹的传播,从而实现了宽带共形自聚焦和可控波前弯曲。数值模拟和实验结果一致表明,该透镜支持宽带弯曲波自聚焦和稳定的波前弯曲。在这个框架内,我们发现了一个共形塔尔博特效应,其中周期波前由于曲率引起的度量失真而表现出移位和非均匀缩放的自像。此外,正如实验结果所证实的那样,利用透镜固有的自聚焦效应,CML可以实现宽带振动抑制和高效的能量收集。本研究为弯曲弯曲系统的波浪转向、传感、能量转换和振动控制等多功能应用奠定了理论和实验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal Mikaelian lens for flexural wave self-focusing, bending, non-diffraction Talbot effects, vibration reduction and energy harvesting
In this study, we employ conformal transformation methodology to design an arc-shaped flexural Mikaelian lens — hereafter termed the Conformal Mikaelian Lens (CML). The lens’s graded refractive index profile is engineered through coordinate transformation of conventional Mikaelian lens parameters into polar space. Beyond geometric transformation, we interpret the CML as an effective Riemannian space and analyze wave propagation along geodesic trajectories, which enables broadband conformal self-focusing and controllable wavefront bending. Numerical simulations and experimental results consistently demonstrate that the lens supports broadband flexural wave self-focusing and stable wavefront bending. Within this framework, we discover a conformal Talbot effect, in which periodic wavefronts exhibit shifted and non-uniformly scaled self-images due to curvature-induced metric distortion. Furthermore, leveraging the lens’s intrinsic self-focusing effect, the CML enables broadband vibration suppression and efficient energy harvesting, as confirmed by experimental results. This work establishes a theoretical and experimental foundation for multifunctional applications such as wave steering, sensing, energy conversion, and vibration control in curved flexural systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信