动态混合建模:增量识别和模型预测控制

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Adrian Caspari , Thomas Bierweiler , Sarah Fadda , Daniel Labisch , Maarten Nauta , Franzisko Wagner , Merle Warmbold , Constantinos C. Pantelides
{"title":"动态混合建模:增量识别和模型预测控制","authors":"Adrian Caspari ,&nbsp;Thomas Bierweiler ,&nbsp;Sarah Fadda ,&nbsp;Daniel Labisch ,&nbsp;Maarten Nauta ,&nbsp;Franzisko Wagner ,&nbsp;Merle Warmbold ,&nbsp;Constantinos C. Pantelides","doi":"10.1016/j.compchemeng.2025.109413","DOIUrl":null,"url":null,"abstract":"<div><div>Mathematical models are crucial for optimizing and controlling chemical processes, yet they often face significant limitations in terms of computational time, algorithm complexity, and development costs. Hybrid models, which combine mechanistic models with data-driven models (i.e. models derived via the application of machine learning to experimental data), have emerged as a promising solution to these challenges. However, the identification of dynamic hybrid models remains difficult due to the need to integrate data-driven models within mechanistic model structures.</div><div>We present an incremental identification approach for dynamic hybrid models that decouples the mechanistic and data-driven components to overcome computational and conceptual difficulties. Our methodology comprises four key steps: (1) regularized dynamic parameter estimation to determine optimal time profiles for flux variables, (2) correlation analysis to evaluate relationships between variables, (3) data-driven model identification using advanced machine learning techniques, and (4) hybrid model integration to combine the mechanistic and data-driven components. This approach facilitates early evaluation of model structure suitability, accelerates the development of hybrid models, and allows for independent identification of data-driven components.</div><div>Three case studies are presented to illustrate the robustness, reliability, and efficiency of our incremental approach in handling complex systems and scenarios with limited data.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109413"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic hybrid modeling: Incremental identification and model predictive control\",\"authors\":\"Adrian Caspari ,&nbsp;Thomas Bierweiler ,&nbsp;Sarah Fadda ,&nbsp;Daniel Labisch ,&nbsp;Maarten Nauta ,&nbsp;Franzisko Wagner ,&nbsp;Merle Warmbold ,&nbsp;Constantinos C. Pantelides\",\"doi\":\"10.1016/j.compchemeng.2025.109413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mathematical models are crucial for optimizing and controlling chemical processes, yet they often face significant limitations in terms of computational time, algorithm complexity, and development costs. Hybrid models, which combine mechanistic models with data-driven models (i.e. models derived via the application of machine learning to experimental data), have emerged as a promising solution to these challenges. However, the identification of dynamic hybrid models remains difficult due to the need to integrate data-driven models within mechanistic model structures.</div><div>We present an incremental identification approach for dynamic hybrid models that decouples the mechanistic and data-driven components to overcome computational and conceptual difficulties. Our methodology comprises four key steps: (1) regularized dynamic parameter estimation to determine optimal time profiles for flux variables, (2) correlation analysis to evaluate relationships between variables, (3) data-driven model identification using advanced machine learning techniques, and (4) hybrid model integration to combine the mechanistic and data-driven components. This approach facilitates early evaluation of model structure suitability, accelerates the development of hybrid models, and allows for independent identification of data-driven components.</div><div>Three case studies are presented to illustrate the robustness, reliability, and efficiency of our incremental approach in handling complex systems and scenarios with limited data.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"204 \",\"pages\":\"Article 109413\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425004168\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425004168","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

数学模型对于优化和控制化学过程至关重要,但它们通常在计算时间、算法复杂性和开发成本方面面临重大限制。混合模型将机械模型与数据驱动模型(即通过将机器学习应用于实验数据而获得的模型)相结合,已成为应对这些挑战的一种有希望的解决方案。然而,由于需要在机械模型结构中集成数据驱动模型,动态混合模型的识别仍然很困难。我们提出了一种动态混合模型的增量识别方法,该方法将机制和数据驱动组件解耦,以克服计算和概念上的困难。我们的方法包括四个关键步骤:(1)正则化动态参数估计,以确定通量变量的最佳时间曲线;(2)相关分析,以评估变量之间的关系;(3)使用先进的机器学习技术进行数据驱动模型识别;(4)混合模型集成,将机制和数据驱动组件结合起来。这种方法促进了模型结构适用性的早期评估,加速了混合模型的开发,并允许独立识别数据驱动的组件。提出了三个案例研究,以说明我们的增量方法在处理有限数据的复杂系统和场景时的鲁棒性,可靠性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic hybrid modeling: Incremental identification and model predictive control
Mathematical models are crucial for optimizing and controlling chemical processes, yet they often face significant limitations in terms of computational time, algorithm complexity, and development costs. Hybrid models, which combine mechanistic models with data-driven models (i.e. models derived via the application of machine learning to experimental data), have emerged as a promising solution to these challenges. However, the identification of dynamic hybrid models remains difficult due to the need to integrate data-driven models within mechanistic model structures.
We present an incremental identification approach for dynamic hybrid models that decouples the mechanistic and data-driven components to overcome computational and conceptual difficulties. Our methodology comprises four key steps: (1) regularized dynamic parameter estimation to determine optimal time profiles for flux variables, (2) correlation analysis to evaluate relationships between variables, (3) data-driven model identification using advanced machine learning techniques, and (4) hybrid model integration to combine the mechanistic and data-driven components. This approach facilitates early evaluation of model structure suitability, accelerates the development of hybrid models, and allows for independent identification of data-driven components.
Three case studies are presented to illustrate the robustness, reliability, and efficiency of our incremental approach in handling complex systems and scenarios with limited data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信