{"title":"层次结构引导的高维多视图聚类","authors":"Jiajia Jiang , Kuangnan Fang , Shuangge Ma , Qingzhao Zhang","doi":"10.1016/j.jmva.2025.105488","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view data clustering is pivotal for comprehending the heterogeneous structure of data by integrating information from diverse aspects. Nevertheless, practical challenges arise due to the differences in the granularity from different views, resulting in a hierarchical clustering structure within these distinct data types. In this work, we consider such structure information and propose a novel high-dimensional multi-view clustering approach with a hierarchical structure across views. The proposed non-convex problem is effectively tackled using the Alternating Direction Method of Multipliers algorithm, and we establish the statistical properties of the estimator. Simulation results demonstrate the effectiveness and superiority of our proposed method. In the analysis of the histopathological imaging data and gene expression data related to lung adenocarcinoma, our method unveils a hierarchical clustering structure that significantly diverges from alternative approaches.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"211 ","pages":"Article 105488"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical structure-guided high-dimensional multi-view clustering\",\"authors\":\"Jiajia Jiang , Kuangnan Fang , Shuangge Ma , Qingzhao Zhang\",\"doi\":\"10.1016/j.jmva.2025.105488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-view data clustering is pivotal for comprehending the heterogeneous structure of data by integrating information from diverse aspects. Nevertheless, practical challenges arise due to the differences in the granularity from different views, resulting in a hierarchical clustering structure within these distinct data types. In this work, we consider such structure information and propose a novel high-dimensional multi-view clustering approach with a hierarchical structure across views. The proposed non-convex problem is effectively tackled using the Alternating Direction Method of Multipliers algorithm, and we establish the statistical properties of the estimator. Simulation results demonstrate the effectiveness and superiority of our proposed method. In the analysis of the histopathological imaging data and gene expression data related to lung adenocarcinoma, our method unveils a hierarchical clustering structure that significantly diverges from alternative approaches.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"211 \",\"pages\":\"Article 105488\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000831\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000831","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Multi-view data clustering is pivotal for comprehending the heterogeneous structure of data by integrating information from diverse aspects. Nevertheless, practical challenges arise due to the differences in the granularity from different views, resulting in a hierarchical clustering structure within these distinct data types. In this work, we consider such structure information and propose a novel high-dimensional multi-view clustering approach with a hierarchical structure across views. The proposed non-convex problem is effectively tackled using the Alternating Direction Method of Multipliers algorithm, and we establish the statistical properties of the estimator. Simulation results demonstrate the effectiveness and superiority of our proposed method. In the analysis of the histopathological imaging data and gene expression data related to lung adenocarcinoma, our method unveils a hierarchical clustering structure that significantly diverges from alternative approaches.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.