机器学习引导的TIP4P水模型的重新参数化,用于准确的热、电性质预测

IF 5.2 2区 化学 Q2 CHEMISTRY, PHYSICAL
Khowshik Dey , Murat Barisik , Yu Liang
{"title":"机器学习引导的TIP4P水模型的重新参数化,用于准确的热、电性质预测","authors":"Khowshik Dey ,&nbsp;Murat Barisik ,&nbsp;Yu Liang","doi":"10.1016/j.molliq.2025.128568","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately modeling the thermal and electrical properties of water remains a fundamental challenge in molecular dynamics (MD) simulations due to competing physical mechanisms that govern transport behavior. In this study, we present a machine learning (ML)-guided reparameterization framework for the widely used TIP4P water model to improve the prediction accuracy of key macroscopic properties of thermal conductivity, dielectric constant, diffusion coefficient, and density. We employ an optimized neural network trained on simulation data and extend it with explainable AI (XAI) techniques, particularly Deep Symbolic Optimization (DSO), to uncover interpretable mathematical relationships between molecular parameters and target properties. While conventional ML models often overfit to numerical targets without physical fidelity, our XAI-augmented approach enabled systematic tuning of Lennard-Jones parameters, partial charges, and charge location. The resulting model, TIP4P/XAIe, demonstrates significantly improved accuracy, predicting dielectric permittivity within 10 % of the experimental value, thermal conductivity within 30 %, and the diffusion coefficient within 5 %, while preserving the correct temperature-dependent trends. This work highlights the limitations of purely data-driven approaches and demonstrates the potential of integrating physics-based reasoning with machine learning for next-generation force field development.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"437 ","pages":"Article 128568"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-guided reparameterization of the TIP4P water model for accurate thermal and electrical property predictions\",\"authors\":\"Khowshik Dey ,&nbsp;Murat Barisik ,&nbsp;Yu Liang\",\"doi\":\"10.1016/j.molliq.2025.128568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately modeling the thermal and electrical properties of water remains a fundamental challenge in molecular dynamics (MD) simulations due to competing physical mechanisms that govern transport behavior. In this study, we present a machine learning (ML)-guided reparameterization framework for the widely used TIP4P water model to improve the prediction accuracy of key macroscopic properties of thermal conductivity, dielectric constant, diffusion coefficient, and density. We employ an optimized neural network trained on simulation data and extend it with explainable AI (XAI) techniques, particularly Deep Symbolic Optimization (DSO), to uncover interpretable mathematical relationships between molecular parameters and target properties. While conventional ML models often overfit to numerical targets without physical fidelity, our XAI-augmented approach enabled systematic tuning of Lennard-Jones parameters, partial charges, and charge location. The resulting model, TIP4P/XAIe, demonstrates significantly improved accuracy, predicting dielectric permittivity within 10 % of the experimental value, thermal conductivity within 30 %, and the diffusion coefficient within 5 %, while preserving the correct temperature-dependent trends. This work highlights the limitations of purely data-driven approaches and demonstrates the potential of integrating physics-based reasoning with machine learning for next-generation force field development.</div></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":\"437 \",\"pages\":\"Article 128568\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732225017453\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225017453","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于控制传输行为的相互竞争的物理机制,准确地模拟水的热学和电学性质仍然是分子动力学(MD)模拟的一个基本挑战。在这项研究中,我们提出了一个机器学习(ML)引导的重参数化框架,用于广泛使用的TIP4P水模型,以提高热导率、介电常数、扩散系数和密度等关键宏观性质的预测精度。我们采用经过优化的神经网络,对模拟数据进行训练,并使用可解释的人工智能(XAI)技术对其进行扩展,特别是深度符号优化(DSO),以揭示分子参数和目标属性之间可解释的数学关系。虽然传统的机器学习模型经常过度拟合数值目标而没有物理保真度,但我们的xai增强方法可以系统地调整Lennard-Jones参数,部分电荷和电荷位置。所得模型TIP4P/XAIe的预测精度显著提高,介电常数在实验值的10%以内,导热系数在实验值的30%以内,扩散系数在实验值的5%以内,同时保持了正确的温度依赖趋势。这项工作强调了纯数据驱动方法的局限性,并展示了将基于物理的推理与机器学习集成到下一代力场开发中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-guided reparameterization of the TIP4P water model for accurate thermal and electrical property predictions
Accurately modeling the thermal and electrical properties of water remains a fundamental challenge in molecular dynamics (MD) simulations due to competing physical mechanisms that govern transport behavior. In this study, we present a machine learning (ML)-guided reparameterization framework for the widely used TIP4P water model to improve the prediction accuracy of key macroscopic properties of thermal conductivity, dielectric constant, diffusion coefficient, and density. We employ an optimized neural network trained on simulation data and extend it with explainable AI (XAI) techniques, particularly Deep Symbolic Optimization (DSO), to uncover interpretable mathematical relationships between molecular parameters and target properties. While conventional ML models often overfit to numerical targets without physical fidelity, our XAI-augmented approach enabled systematic tuning of Lennard-Jones parameters, partial charges, and charge location. The resulting model, TIP4P/XAIe, demonstrates significantly improved accuracy, predicting dielectric permittivity within 10 % of the experimental value, thermal conductivity within 30 %, and the diffusion coefficient within 5 %, while preserving the correct temperature-dependent trends. This work highlights the limitations of purely data-driven approaches and demonstrates the potential of integrating physics-based reasoning with machine learning for next-generation force field development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信