保留正交性的加性映射线性的代数表征

IF 1 3区 数学 Q1 MATHEMATICS
Lei Li, Siyu Liu, Antonio M. Peralta
{"title":"保留正交性的加性映射线性的代数表征","authors":"Lei Li,&nbsp;Siyu Liu,&nbsp;Antonio M. Peralta","doi":"10.1007/s43034-025-00454-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study when an additive mapping preserving orthogonality between two complex inner product spaces is automatically complex-linear or conjugate-linear. Concretely, let <i>H</i> and <i>K</i> be complex inner product spaces with <span>\\(\\hbox{dim}(H)\\ge 2\\)</span>, and let <span>\\(A: H\\rightarrow K\\)</span> be an additive map preserving orthogonality. We obtain that <i>A</i> is zero or a positive scalar multiple of a real-linear isometry from <i>H</i> into <i>K</i>. We further prove that the following statements are equivalent: </p><dl><dt><dfn>(a):</dfn></dt><dd>\n <p><i>A</i> is complex-linear or conjugate-linear.</p>\n </dd><dt><dfn>(b):</dfn></dt><dd>\n <p>For every <span>\\(z\\in H\\)</span> we have <span>\\(A(i z) \\in \\{\\pm i A(z)\\}\\)</span>.</p>\n </dd><dt><dfn>(c):</dfn></dt><dd>\n <p>There exists a non-zero point <span>\\(z\\in H\\)</span> such that <span>\\(A(i z) \\in \\{\\pm i A(z)\\}\\)</span>.</p>\n </dd><dt><dfn>(d):</dfn></dt><dd>\n <p>There exists a non-zero point <span>\\(z\\in H\\)</span> such that <span>\\(i A(z) \\in A(H)\\)</span>.</p>\n </dd></dl><p>The mapping <i>A</i> is neither complex-linear nor conjugate-linear if, and only if, there exists a non-zero <span>\\(x\\in H\\)</span> such that <span>\\(i A(x)\\notin A(H)\\)</span> (equivalently, for every non-zero <span>\\(x\\in H\\)</span>, <span>\\(i A(x)\\notin A(H)\\)</span>). Among the consequences, we show that, under the hypothesis above, the mapping <i>A</i> is automatically complex-linear or conjugate-linear if <i>A</i> has dense range, or if <i>H</i> and <i>K</i> are finite dimensional with <span>\\(\\hbox{dim}(K)&lt; 2\\hbox{dim}(H)\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-025-00454-0.pdf","citationCount":"0","resultStr":"{\"title\":\"An algebraic characterization of linearity for additive maps preserving orthogonality\",\"authors\":\"Lei Li,&nbsp;Siyu Liu,&nbsp;Antonio M. Peralta\",\"doi\":\"10.1007/s43034-025-00454-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study when an additive mapping preserving orthogonality between two complex inner product spaces is automatically complex-linear or conjugate-linear. Concretely, let <i>H</i> and <i>K</i> be complex inner product spaces with <span>\\\\(\\\\hbox{dim}(H)\\\\ge 2\\\\)</span>, and let <span>\\\\(A: H\\\\rightarrow K\\\\)</span> be an additive map preserving orthogonality. We obtain that <i>A</i> is zero or a positive scalar multiple of a real-linear isometry from <i>H</i> into <i>K</i>. We further prove that the following statements are equivalent: </p><dl><dt><dfn>(a):</dfn></dt><dd>\\n <p><i>A</i> is complex-linear or conjugate-linear.</p>\\n </dd><dt><dfn>(b):</dfn></dt><dd>\\n <p>For every <span>\\\\(z\\\\in H\\\\)</span> we have <span>\\\\(A(i z) \\\\in \\\\{\\\\pm i A(z)\\\\}\\\\)</span>.</p>\\n </dd><dt><dfn>(c):</dfn></dt><dd>\\n <p>There exists a non-zero point <span>\\\\(z\\\\in H\\\\)</span> such that <span>\\\\(A(i z) \\\\in \\\\{\\\\pm i A(z)\\\\}\\\\)</span>.</p>\\n </dd><dt><dfn>(d):</dfn></dt><dd>\\n <p>There exists a non-zero point <span>\\\\(z\\\\in H\\\\)</span> such that <span>\\\\(i A(z) \\\\in A(H)\\\\)</span>.</p>\\n </dd></dl><p>The mapping <i>A</i> is neither complex-linear nor conjugate-linear if, and only if, there exists a non-zero <span>\\\\(x\\\\in H\\\\)</span> such that <span>\\\\(i A(x)\\\\notin A(H)\\\\)</span> (equivalently, for every non-zero <span>\\\\(x\\\\in H\\\\)</span>, <span>\\\\(i A(x)\\\\notin A(H)\\\\)</span>). Among the consequences, we show that, under the hypothesis above, the mapping <i>A</i> is automatically complex-linear or conjugate-linear if <i>A</i> has dense range, or if <i>H</i> and <i>K</i> are finite dimensional with <span>\\\\(\\\\hbox{dim}(K)&lt; 2\\\\hbox{dim}(H)\\\\)</span>.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43034-025-00454-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-025-00454-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00454-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了两个复内积空间之间保持正交的加性映射何时自动为复线性或共轭线性。具体地说,设H和K是具有\(\hbox{dim}(H)\ge 2\)的复内积空间,设\(A: H\rightarrow K\)是保持正交性的加性映射。我们得到了A是0或从H到k的实线等距的正标量倍,并进一步证明了下列表述是等价的:(A): A是复线性或共轭线性。(b):对于每个\(z\in H\),我们有\(A(i z) \in \{\pm i A(z)\}\)。(c):存在一个非零点\(z\in H\),使得\(A(i z) \in \{\pm i A(z)\}\)。(d):存在一个非零点\(z\in H\),使得\(i A(z) \in A(H)\)。映射A既不是复线性的,也不是共轭线性的,当且仅当存在一个非零\(x\in H\)使得\(i A(x)\notin A(H)\)(等价地,对于每个非零\(x\in H\), \(i A(x)\notin A(H)\))。在这些结果中,我们证明了,在上述假设下,如果A具有密集范围,或者H和K是有限维的\(\hbox{dim}(K)< 2\hbox{dim}(H)\),映射A是自动复线性或共轭线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algebraic characterization of linearity for additive maps preserving orthogonality

We study when an additive mapping preserving orthogonality between two complex inner product spaces is automatically complex-linear or conjugate-linear. Concretely, let H and K be complex inner product spaces with \(\hbox{dim}(H)\ge 2\), and let \(A: H\rightarrow K\) be an additive map preserving orthogonality. We obtain that A is zero or a positive scalar multiple of a real-linear isometry from H into K. We further prove that the following statements are equivalent:

(a):

A is complex-linear or conjugate-linear.

(b):

For every \(z\in H\) we have \(A(i z) \in \{\pm i A(z)\}\).

(c):

There exists a non-zero point \(z\in H\) such that \(A(i z) \in \{\pm i A(z)\}\).

(d):

There exists a non-zero point \(z\in H\) such that \(i A(z) \in A(H)\).

The mapping A is neither complex-linear nor conjugate-linear if, and only if, there exists a non-zero \(x\in H\) such that \(i A(x)\notin A(H)\) (equivalently, for every non-zero \(x\in H\), \(i A(x)\notin A(H)\)). Among the consequences, we show that, under the hypothesis above, the mapping A is automatically complex-linear or conjugate-linear if A has dense range, or if H and K are finite dimensional with \(\hbox{dim}(K)< 2\hbox{dim}(H)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信