系统级计算是视野异质性的基础。

Shutian Xue, Antoine Barbot, Jared Abrams, Qingyuan Chen, Marisa Carrasco
{"title":"系统级计算是视野异质性的基础。","authors":"Shutian Xue, Antoine Barbot, Jared Abrams, Qingyuan Chen, Marisa Carrasco","doi":"10.1101/2025.09.19.677418","DOIUrl":null,"url":null,"abstract":"<p><p>Human visual perception for basic dimensions varies with eccentricity and polar angle, influencing daily activities such as reading, searching and scene perception. We investigated whether and how system-level computations that transform visual input into perception underlie these heterogeneities. Using the equivalent noise method and perceptual template model, we estimated gain, internal noise, and nonlinearity for orientation discrimination across eccentricity (fovea, parafovea and perifovea) and around polar angle. Participants discriminated the orientation of Gabors embedded in dynamic white noise and showed the expected variations across eccentricity and around polar angle. Importantly, visual performance declined with eccentricity due to decreased gain and nonlinearity and increased internal noise. Observers with stronger eccentricity effects showed greater gain decrease. Only gain varied with polar angle-higher along the horizontal than vertical meridian, and lower than upper vertical meridian-paralleling performance asymmetries. This dissociation aligns with known variations in neuronal count and tuning, suggesting that neural correlations and neural noise contribute to these system-level computations. By revealing distinct system-level computations underlying the eccentricity effect and polar angle asymmetries, our findings link perceptual heterogeneity across the visual field and neural architecture and provide insights into how the human brain encodes information under neural constraints.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458108/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinct System-Level Computations Underlie Perception Differences Throughout the Visual Field.\",\"authors\":\"Shutian Xue, Antoine Barbot, Jared Abrams, Qingyuan Chen, Marisa Carrasco\",\"doi\":\"10.1101/2025.09.19.677418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human visual perception for basic dimensions varies with eccentricity and polar angle, influencing daily activities such as reading, searching and scene perception. We investigated whether and how system-level computations that transform visual input into perception underlie these heterogeneities. Using the equivalent noise method and perceptual template model, we estimated gain, internal noise, and nonlinearity for orientation discrimination across eccentricity (fovea, parafovea and perifovea) and around polar angle. Participants discriminated the orientation of Gabors embedded in dynamic white noise and showed the expected variations across eccentricity and around polar angle. Importantly, visual performance declined with eccentricity due to decreased gain and nonlinearity and increased internal noise. Observers with stronger eccentricity effects showed greater gain decrease. Only gain varied with polar angle-higher along the horizontal than vertical meridian, and lower than upper vertical meridian-paralleling performance asymmetries. This dissociation aligns with known variations in neuronal count and tuning, suggesting that neural correlations and neural noise contribute to these system-level computations. By revealing distinct system-level computations underlying the eccentricity effect and polar angle asymmetries, our findings link perceptual heterogeneity across the visual field and neural architecture and provide insights into how the human brain encodes information under neural constraints.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458108/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.09.19.677418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.19.677418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视知觉随偏心角和极角的变化而变化。我们研究了将视觉输入转化为感知的系统级计算是否以及如何构成这些异质性的基础。利用等效噪声方法和感知模板模型,我们估计了偏心(中央凹、副中央凹和周围中心凹)和极角周围的方向识别的增益、内部噪声和非线性。由于增益和非线性的降低以及内部噪声的增加,性能随偏心而下降。偏心效应较强的观测点表现出较大的增益衰减。只有增益随极角而变化——沿水平方向比垂直子午线高,沿垂直子午线低——平行性能不对称。这种分离与已知的神经元计数和调谐的变化一致,表明神经相关性和神经噪声有助于这些系统级计算。通过揭示偏心效应和极角不对称背后的独特系统级计算,我们的研究结果提供了跨视野的感知异质性和神经结构之间的联系。意义声明:人类的视觉表现在整个视野范围内是不同的,包括偏心度(凝视距离)和极角(圆尺寸)。光学和视网膜因素以及皮质表面积越来越多地解释这些变化,但只是部分。在这里,我们表明,视野的非均匀性是由不同的系统级计算引起的,这些计算在偏心率和极角之间变化。偏心效应源于增益减小、非线性和内部噪声升高,而极角不对称仅由增益变化引起。这些发现提供了行为与其神经基础之间的计算联系,并强调了在建模人类感知时考虑偏心和极角的重要性。此外,它们对视觉缺陷和人体工程学接口的康复方案具有翻译意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinct System-Level Computations Underlie Perception Differences Throughout the Visual Field.

Human visual perception for basic dimensions varies with eccentricity and polar angle, influencing daily activities such as reading, searching and scene perception. We investigated whether and how system-level computations that transform visual input into perception underlie these heterogeneities. Using the equivalent noise method and perceptual template model, we estimated gain, internal noise, and nonlinearity for orientation discrimination across eccentricity (fovea, parafovea and perifovea) and around polar angle. Participants discriminated the orientation of Gabors embedded in dynamic white noise and showed the expected variations across eccentricity and around polar angle. Importantly, visual performance declined with eccentricity due to decreased gain and nonlinearity and increased internal noise. Observers with stronger eccentricity effects showed greater gain decrease. Only gain varied with polar angle-higher along the horizontal than vertical meridian, and lower than upper vertical meridian-paralleling performance asymmetries. This dissociation aligns with known variations in neuronal count and tuning, suggesting that neural correlations and neural noise contribute to these system-level computations. By revealing distinct system-level computations underlying the eccentricity effect and polar angle asymmetries, our findings link perceptual heterogeneity across the visual field and neural architecture and provide insights into how the human brain encodes information under neural constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信