Veysi Tekin, Muhammed Tekinhatun, Salih Taha Alperen Özçelik, Hüseyin Fırat, Hüseyin Üzen
{"title":"基于深度学习的囊性支气管扩张自动分类EffConvNeXt模型:一种可解释的人工智能方法。","authors":"Veysi Tekin, Muhammed Tekinhatun, Salih Taha Alperen Özçelik, Hüseyin Fırat, Hüseyin Üzen","doi":"10.1007/s10278-025-01688-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic bronchiectasis and pneumonia are respiratory conditions that significantly impact morbidity and mortality worldwide. Diagnosing these diseases accurately is crucial, as early detection can greatly improve patient outcomes. These diseases are respiratory conditions that present with overlapping features on chest X-rays (CXR), making accurate diagnosis challenging. Recent advancements in deep learning (DL) have improved diagnostic accuracy in medical imaging. This study proposes the EffConvNeXt model, a hybrid approach combining EfficientNetB1 and ConvNeXtTiny, designed to enhance classification accuracy for cystic bronchiectasis, pneumonia, and normal cases in CXRs. The model effectively balances EfficientNetB1's efficiency with ConvNeXtTiny's advanced feature extraction, allowing for better identification of complex patterns in CXR images. Additionally, the EffConvNeXt model combines EfficientNetB1 and ConvNeXtTiny, addressing limitations of each model individually: EfficientNetB1's SE blocks improve focus on critical image areas while keeping the model lightweight and fast, and ConvNeXtTiny enhances detection of subtle abnormalities, making the combined model highly effective for rapid and accurate CXR image analysis in clinical settings. For the performance analysis of the EffConvNeXt model, experimental studies were conducted using 5899 CXR images collected from Dicle University Medical Faculty. When used individually, ConvNeXtTiny achieved an accuracy rate of 97.12%, while EfficientNetB1 reached 97.79%. By combining both models, the EffConvNeXt raised the accuracy to 98.25%, showing a 0.46% improvement. With this result, the other tested DL models fell behind. These findings indicate that EffConvNeXt provides a reliable, automated solution for distinguishing cystic bronchiectasis and pneumonia, supporting clinical decision-making with enhanced diagnostic accuracy.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning-Based EffConvNeXt Model for Automatic Classification of Cystic Bronchiectasis: An Explainable AI Approach.\",\"authors\":\"Veysi Tekin, Muhammed Tekinhatun, Salih Taha Alperen Özçelik, Hüseyin Fırat, Hüseyin Üzen\",\"doi\":\"10.1007/s10278-025-01688-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cystic bronchiectasis and pneumonia are respiratory conditions that significantly impact morbidity and mortality worldwide. Diagnosing these diseases accurately is crucial, as early detection can greatly improve patient outcomes. These diseases are respiratory conditions that present with overlapping features on chest X-rays (CXR), making accurate diagnosis challenging. Recent advancements in deep learning (DL) have improved diagnostic accuracy in medical imaging. This study proposes the EffConvNeXt model, a hybrid approach combining EfficientNetB1 and ConvNeXtTiny, designed to enhance classification accuracy for cystic bronchiectasis, pneumonia, and normal cases in CXRs. The model effectively balances EfficientNetB1's efficiency with ConvNeXtTiny's advanced feature extraction, allowing for better identification of complex patterns in CXR images. Additionally, the EffConvNeXt model combines EfficientNetB1 and ConvNeXtTiny, addressing limitations of each model individually: EfficientNetB1's SE blocks improve focus on critical image areas while keeping the model lightweight and fast, and ConvNeXtTiny enhances detection of subtle abnormalities, making the combined model highly effective for rapid and accurate CXR image analysis in clinical settings. For the performance analysis of the EffConvNeXt model, experimental studies were conducted using 5899 CXR images collected from Dicle University Medical Faculty. When used individually, ConvNeXtTiny achieved an accuracy rate of 97.12%, while EfficientNetB1 reached 97.79%. By combining both models, the EffConvNeXt raised the accuracy to 98.25%, showing a 0.46% improvement. With this result, the other tested DL models fell behind. These findings indicate that EffConvNeXt provides a reliable, automated solution for distinguishing cystic bronchiectasis and pneumonia, supporting clinical decision-making with enhanced diagnostic accuracy.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01688-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01688-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Learning-Based EffConvNeXt Model for Automatic Classification of Cystic Bronchiectasis: An Explainable AI Approach.
Cystic bronchiectasis and pneumonia are respiratory conditions that significantly impact morbidity and mortality worldwide. Diagnosing these diseases accurately is crucial, as early detection can greatly improve patient outcomes. These diseases are respiratory conditions that present with overlapping features on chest X-rays (CXR), making accurate diagnosis challenging. Recent advancements in deep learning (DL) have improved diagnostic accuracy in medical imaging. This study proposes the EffConvNeXt model, a hybrid approach combining EfficientNetB1 and ConvNeXtTiny, designed to enhance classification accuracy for cystic bronchiectasis, pneumonia, and normal cases in CXRs. The model effectively balances EfficientNetB1's efficiency with ConvNeXtTiny's advanced feature extraction, allowing for better identification of complex patterns in CXR images. Additionally, the EffConvNeXt model combines EfficientNetB1 and ConvNeXtTiny, addressing limitations of each model individually: EfficientNetB1's SE blocks improve focus on critical image areas while keeping the model lightweight and fast, and ConvNeXtTiny enhances detection of subtle abnormalities, making the combined model highly effective for rapid and accurate CXR image analysis in clinical settings. For the performance analysis of the EffConvNeXt model, experimental studies were conducted using 5899 CXR images collected from Dicle University Medical Faculty. When used individually, ConvNeXtTiny achieved an accuracy rate of 97.12%, while EfficientNetB1 reached 97.79%. By combining both models, the EffConvNeXt raised the accuracy to 98.25%, showing a 0.46% improvement. With this result, the other tested DL models fell behind. These findings indicate that EffConvNeXt provides a reliable, automated solution for distinguishing cystic bronchiectasis and pneumonia, supporting clinical decision-making with enhanced diagnostic accuracy.