快速涟漪-三角洲耦合作为重复性脑损伤创伤后癫痫发生的早期生物标志物。

Oleksii Shandra, Dzenis Mahmutovic, Biswajit Maharathi, Md Adil Arman, Michael J Benko, Owen Leitzel, Pritom Kumar Saha, Stefanie Robel
{"title":"快速涟漪-三角洲耦合作为重复性脑损伤创伤后癫痫发生的早期生物标志物。","authors":"Oleksii Shandra, Dzenis Mahmutovic, Biswajit Maharathi, Md Adil Arman, Michael J Benko, Owen Leitzel, Pritom Kumar Saha, Stefanie Robel","doi":"10.1101/2025.09.16.676387","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) can induce post-traumatic epilepsy (PTE), but early biomarkers for epileptogenesis are lacking. We used a repetitive diffuse TBI (rdTBI) model in mice with continuous video-EEG monitoring up to 4½ months post-injury to investigate electrographic biomarkers before and during post-traumatic seizure development. 25% of mice developed post-traumatic seizures with highly variable latency (5-126 days post-injury). Most significantly, we identified fast ripple-delta DOWN state coupling as an early biomarker that was detectable at 4 days post-TBI and appeared before seizure onset in all seizure-experiencing mice. This EEG signature distinguished seizure-experiencing from seizure-free TBI mice with high specificity. Power spectrum analysis revealed elevated delta and theta power, reduced physiological fast oscillations (alpha, beta, gamma) and increased pathological high-frequency oscillations (fast ripples) in seizure-experiencing animals, indicating network hyperexcitability. Spike analysis showed that while TBI itself increased cortical excitability, seizure onset triggered a dramatic further escalation in interictal activity. These electrographic signatures were remarkably consistent across all seizure-experiencing animals regardless of single or recurrent seizure pattern. Our results demonstrate that fast ripple-delta coupling represents a promising early biomarker detectable at 4 days post-TBI, before seizure onset, offering potential for early identification of post-traumatic seizure susceptibility. Importantly, this biomarker identified all seizure-prone animals regardless of whether they developed single or recurrent seizures, suggesting shared underlying mechanisms and clinical relevance for any post-traumatic seizure occurrence. These findings emphasize the utility of temporal EEG analysis for detecting early electrographic changes in post-traumatic epileptogenesis and may inform future intervention strategies.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458357/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast Ripple-Delta Coupling as Early Biomarker for Post-Traumatic Epileptogenesis in Repetitive Brain Injury.\",\"authors\":\"Oleksii Shandra, Dzenis Mahmutovic, Biswajit Maharathi, Md Adil Arman, Michael J Benko, Owen Leitzel, Pritom Kumar Saha, Stefanie Robel\",\"doi\":\"10.1101/2025.09.16.676387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic brain injury (TBI) can induce post-traumatic epilepsy (PTE), but early biomarkers for epileptogenesis are lacking. We used a repetitive diffuse TBI (rdTBI) model in mice with continuous video-EEG monitoring up to 4½ months post-injury to investigate electrographic biomarkers before and during post-traumatic seizure development. 25% of mice developed post-traumatic seizures with highly variable latency (5-126 days post-injury). Most significantly, we identified fast ripple-delta DOWN state coupling as an early biomarker that was detectable at 4 days post-TBI and appeared before seizure onset in all seizure-experiencing mice. This EEG signature distinguished seizure-experiencing from seizure-free TBI mice with high specificity. Power spectrum analysis revealed elevated delta and theta power, reduced physiological fast oscillations (alpha, beta, gamma) and increased pathological high-frequency oscillations (fast ripples) in seizure-experiencing animals, indicating network hyperexcitability. Spike analysis showed that while TBI itself increased cortical excitability, seizure onset triggered a dramatic further escalation in interictal activity. These electrographic signatures were remarkably consistent across all seizure-experiencing animals regardless of single or recurrent seizure pattern. Our results demonstrate that fast ripple-delta coupling represents a promising early biomarker detectable at 4 days post-TBI, before seizure onset, offering potential for early identification of post-traumatic seizure susceptibility. Importantly, this biomarker identified all seizure-prone animals regardless of whether they developed single or recurrent seizures, suggesting shared underlying mechanisms and clinical relevance for any post-traumatic seizure occurrence. These findings emphasize the utility of temporal EEG analysis for detecting early electrographic changes in post-traumatic epileptogenesis and may inform future intervention strategies.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458357/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.09.16.676387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.16.676387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

创伤性脑损伤(TBI)可诱发创伤后癫痫(PTE),但缺乏癫痫发生的早期生物标志物。我们使用重复性弥漫性脑损伤(rdTBI)模型,在损伤后4个半月对小鼠进行连续视频脑电图监测,以研究创伤后癫痫发作发生前和期间的电图生物标志物。25%的小鼠出现创伤后癫痫发作,潜伏期高度可变(损伤后5-126天)。最重要的是,我们发现快速的涟漪δ DOWN状态耦合是一种早期生物标志物,在tbi后4天检测到,在所有癫痫发作的小鼠中出现在癫痫发作之前。这种脑电图特征具有高特异性地区分癫痫发作和无癫痫发作的TBI小鼠。功率谱分析显示,癫痫发作动物的δ和θ波功率升高,生理性快速振荡(α、β、γ)减少,病理性高频振荡(快速波纹)增加,表明神经网络高兴奋性。峰值分析表明,虽然TBI本身增加了皮质兴奋性,但癫痫发作引发了间期活动的进一步急剧升级。这些电图特征在所有癫痫发作的动物中都非常一致,无论单次或反复发作。我们的研究结果表明,快速涟漪-三角洲耦合是一种有希望的早期生物标志物,可在tbi后4天检测到,在癫痫发作之前,为早期识别创伤后癫痫易感性提供了潜力。重要的是,该生物标志物识别了所有癫痫易感动物,无论它们是单次发作还是反复发作,这表明任何创伤后癫痫发作的共同潜在机制和临床相关性。这些发现强调了颞叶脑电图分析在发现创伤后癫痫发生早期电图变化方面的作用,并可能为未来的干预策略提供信息。重点:在经历癫痫发作的小鼠中,早在tbi后4天就可以检测到快速的ripple-delta DOWN状态耦合,并且在癫痫发作之前就出现了,这是第一个可以在关键潜伏期对动物进行癫痫发生风险分层的早期生物标志物。在所有经历脑外伤后癫痫发作的小鼠中,δ和θ能量增加,而α、β和γ能量下降,无论动物是单次发作还是反复发作,都产生了一致的电图特征。在癫痫发作的小鼠中,快速涟漪升高,γ - hfo比值降低,反映了癫痫发作前的网络高兴奋性转移和潜在的抑制性功能障碍。癫痫发作触发了3倍的尖峰活动,而TBI和癫痫发作前小鼠之间的基线尖峰差异并不显著,突出了单独的尖峰计数作为潜伏期预测生物标志物的局限性。所有发作模式(单次和复发)的电图特征几乎相似,这表明网络功能障碍的共同潜在机制,尽管需要更大规模的研究来确定生物标志物是否可以预测发作频率以及发作易感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Ripple-Delta Coupling as Early Biomarker for Post-Traumatic Epileptogenesis in Repetitive Brain Injury.

Traumatic brain injury (TBI) can induce post-traumatic epilepsy (PTE), but early biomarkers for epileptogenesis are lacking. We used a repetitive diffuse TBI (rdTBI) model in mice with continuous video-EEG monitoring up to 4½ months post-injury to investigate electrographic biomarkers before and during post-traumatic seizure development. 25% of mice developed post-traumatic seizures with highly variable latency (5-126 days post-injury). Most significantly, we identified fast ripple-delta DOWN state coupling as an early biomarker that was detectable at 4 days post-TBI and appeared before seizure onset in all seizure-experiencing mice. This EEG signature distinguished seizure-experiencing from seizure-free TBI mice with high specificity. Power spectrum analysis revealed elevated delta and theta power, reduced physiological fast oscillations (alpha, beta, gamma) and increased pathological high-frequency oscillations (fast ripples) in seizure-experiencing animals, indicating network hyperexcitability. Spike analysis showed that while TBI itself increased cortical excitability, seizure onset triggered a dramatic further escalation in interictal activity. These electrographic signatures were remarkably consistent across all seizure-experiencing animals regardless of single or recurrent seizure pattern. Our results demonstrate that fast ripple-delta coupling represents a promising early biomarker detectable at 4 days post-TBI, before seizure onset, offering potential for early identification of post-traumatic seizure susceptibility. Importantly, this biomarker identified all seizure-prone animals regardless of whether they developed single or recurrent seizures, suggesting shared underlying mechanisms and clinical relevance for any post-traumatic seizure occurrence. These findings emphasize the utility of temporal EEG analysis for detecting early electrographic changes in post-traumatic epileptogenesis and may inform future intervention strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信