准连杆平衡的高阶累积量扩展。

ArXiv Pub Date : 2025-09-18
Kai S Shimagaki, Jorge Fernandez-de-Cossio-Diaz, Mauro Pastore, Rémi Monasson, Simona Cocco, John P Barton
{"title":"准连杆平衡的高阶累积量扩展。","authors":"Kai S Shimagaki, Jorge Fernandez-de-Cossio-Diaz, Mauro Pastore, Rémi Monasson, Simona Cocco, John P Barton","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A central question in evolutionary biology is how to quantitatively understand the dynamics of genetically diverse populations. Modeling the genotype distribution is challenging, as it ultimately requires tracking all correlations (or cumulants) among alleles at different loci. The quasi-linkage equilibrium (QLE) approximation simplifies this by assuming that correlations between alleles at different loci are weak - i.e., low linkage disequilibrium - allowing their dynamics to be modeled perturbatively. However, QLE breaks down under strong selection, significant epistatic interactions, or weak recombination. We extend the multilocus QLE framework to allow cumulants up to order <math><mi>K</mi></math> to evolve dynamically, while higher-order cumulants <math> <mrow> <mfenced><mrow><mo>></mo> <mi>K</mi></mrow> </mfenced> </mrow> </math> are assumed to equilibrate rapidly. This extended QLE (exQLE) framework yields a general equation of motion for cumulants up to order <math><mi>K</mi></math> , which parallels the standard QLE dynamics (recovered when <math><mrow><mi>K</mi> <mo>=</mo> <mn>1</mn></mrow> </math> ). In this formulation, cumulant dynamics are driven by the gradient of average fitness, mediated by a geometrically interpretable matrix that stems from competition among genotypes. Our analysis shows that the exQLE with <math><mrow><mi>K</mi> <mo>=</mo> <mn>2</mn></mrow> </math> accurately captures cumulant dynamics even when the fitness function includes higher-order (e.g., third- or fourth-order) epistatic interactions, capabilities that standard QLE lacks. We also applied the exQLE framework to infer fitness parameters from temporal sequence data. Overall, exQLE provides a systematic and interpretable approximation scheme, leveraging analytical cumulant dynamics and reducing complexity by progressively truncating higher-order cumulants.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458595/pdf/","citationCount":"0","resultStr":"{\"title\":\"A High-Order Cumulant Extension of Quasi-Linkage Equilibrium.\",\"authors\":\"Kai S Shimagaki, Jorge Fernandez-de-Cossio-Diaz, Mauro Pastore, Rémi Monasson, Simona Cocco, John P Barton\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A central question in evolutionary biology is how to quantitatively understand the dynamics of genetically diverse populations. Modeling the genotype distribution is challenging, as it ultimately requires tracking all correlations (or cumulants) among alleles at different loci. The quasi-linkage equilibrium (QLE) approximation simplifies this by assuming that correlations between alleles at different loci are weak - i.e., low linkage disequilibrium - allowing their dynamics to be modeled perturbatively. However, QLE breaks down under strong selection, significant epistatic interactions, or weak recombination. We extend the multilocus QLE framework to allow cumulants up to order <math><mi>K</mi></math> to evolve dynamically, while higher-order cumulants <math> <mrow> <mfenced><mrow><mo>></mo> <mi>K</mi></mrow> </mfenced> </mrow> </math> are assumed to equilibrate rapidly. This extended QLE (exQLE) framework yields a general equation of motion for cumulants up to order <math><mi>K</mi></math> , which parallels the standard QLE dynamics (recovered when <math><mrow><mi>K</mi> <mo>=</mo> <mn>1</mn></mrow> </math> ). In this formulation, cumulant dynamics are driven by the gradient of average fitness, mediated by a geometrically interpretable matrix that stems from competition among genotypes. Our analysis shows that the exQLE with <math><mrow><mi>K</mi> <mo>=</mo> <mn>2</mn></mrow> </math> accurately captures cumulant dynamics even when the fitness function includes higher-order (e.g., third- or fourth-order) epistatic interactions, capabilities that standard QLE lacks. We also applied the exQLE framework to infer fitness parameters from temporal sequence data. Overall, exQLE provides a systematic and interpretable approximation scheme, leveraging analytical cumulant dynamics and reducing complexity by progressively truncating higher-order cumulants.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458595/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

进化生物学的一个核心问题是如何定量地理解遗传多样性种群的动态。建模基因型分布是具有挑战性的,因为它最终需要跟踪不同位点等位基因之间的所有相关性(或累积量)。准连锁平衡(QLE)近似通过假设不同位点的等位基因之间的相关性较弱(即低连锁不平衡)来简化这一点,从而允许对其动力学进行扰动建模。然而,在强选择、显著上位相互作用或弱重组的情况下,QLE会被破坏。我们扩展了多位点QLE框架,允许高达$K$阶的累积量动态演化,而假设高阶累积量($>K$)快速平衡。这个扩展的QLE (exQLE)框架产生了高达K阶的累积量的一般运动方程,它与标准QLE动力学(当K = 1$时恢复)相似。在这个公式中,累积动力学是由平均适应度梯度驱动的,由一个几何上可解释的矩阵介导,这个矩阵源于基因型之间的竞争。我们的分析表明,当适应度函数包含高阶(例如,三阶或四阶)上位交互作用时,具有$K=2$的exQLE可以准确地捕获累积动态,这是标准QLE所缺乏的功能。我们还应用了exQLE框架从时间序列数据中推断出适应度参数。总的来说,exQLE提供了一个系统的和可解释的近似方案,利用分析累积量动力学,并通过逐步截断高阶累积量来降低复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A High-Order Cumulant Extension of Quasi-Linkage Equilibrium.

A central question in evolutionary biology is how to quantitatively understand the dynamics of genetically diverse populations. Modeling the genotype distribution is challenging, as it ultimately requires tracking all correlations (or cumulants) among alleles at different loci. The quasi-linkage equilibrium (QLE) approximation simplifies this by assuming that correlations between alleles at different loci are weak - i.e., low linkage disequilibrium - allowing their dynamics to be modeled perturbatively. However, QLE breaks down under strong selection, significant epistatic interactions, or weak recombination. We extend the multilocus QLE framework to allow cumulants up to order K to evolve dynamically, while higher-order cumulants > K are assumed to equilibrate rapidly. This extended QLE (exQLE) framework yields a general equation of motion for cumulants up to order K , which parallels the standard QLE dynamics (recovered when K = 1 ). In this formulation, cumulant dynamics are driven by the gradient of average fitness, mediated by a geometrically interpretable matrix that stems from competition among genotypes. Our analysis shows that the exQLE with K = 2 accurately captures cumulant dynamics even when the fitness function includes higher-order (e.g., third- or fourth-order) epistatic interactions, capabilities that standard QLE lacks. We also applied the exQLE framework to infer fitness parameters from temporal sequence data. Overall, exQLE provides a systematic and interpretable approximation scheme, leveraging analytical cumulant dynamics and reducing complexity by progressively truncating higher-order cumulants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信