基于模块保存和功能富集分析的肿瘤和正常转录组数据加权基因共表达网络分析协议。

IF 1.1 Q3 BIOLOGY
Phuong Nguyen, Erliang Zeng
{"title":"基于模块保存和功能富集分析的肿瘤和正常转录组数据加权基因共表达网络分析协议。","authors":"Phuong Nguyen, Erliang Zeng","doi":"10.21769/BioProtoc.5447","DOIUrl":null,"url":null,"abstract":"<p><p>Weighted gene co-expression network analysis (WGCNA) is widely used in transcriptomic studies to identify groups of highly correlated genes, aiding in the understanding of disease mechanisms. Although numerous protocols exist for constructing WGCNA networks from gene expression data, many focus on single datasets and do not address how to compare module stability across conditions. Here, we present a protocol for constructing and comparing WGCNA modules in paired tumor and normal datasets, enabling the identification of modules involved in both core biological processes and those specifically related to cancer pathogenesis. By incorporating module preservation analysis, this approach allows researchers to gain deeper insights into the molecular underpinnings of oral cancer, as well as other diseases. Overall, this protocol provides a framework for module preservation analysis in paired datasets, enabling researchers to identify which gene co-expression modules are conserved or disrupted between conditions, thereby advancing our understanding of disease-specific vs. universal biological processes. Key features • Presents a step-by-step WGCNA protocol with module preservation and functional enrichment analysis [1,2] using TCGA cancer data, demonstrating network differences between normal and tumor tissues. • Preprocesses gene expression data and conducts downstream analysis for constructed networks. • Requires 2-3 h hands-on time and 8-12 h total computational time, depending on dataset size and permutation number used for module preservation analysis.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 18","pages":"e5447"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457846/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Protocol for Weighted Gene Co-expression Network Analysis With Module Preservation and Functional Enrichment Analysis for Tumor and Normal Transcriptomic Data.\",\"authors\":\"Phuong Nguyen, Erliang Zeng\",\"doi\":\"10.21769/BioProtoc.5447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Weighted gene co-expression network analysis (WGCNA) is widely used in transcriptomic studies to identify groups of highly correlated genes, aiding in the understanding of disease mechanisms. Although numerous protocols exist for constructing WGCNA networks from gene expression data, many focus on single datasets and do not address how to compare module stability across conditions. Here, we present a protocol for constructing and comparing WGCNA modules in paired tumor and normal datasets, enabling the identification of modules involved in both core biological processes and those specifically related to cancer pathogenesis. By incorporating module preservation analysis, this approach allows researchers to gain deeper insights into the molecular underpinnings of oral cancer, as well as other diseases. Overall, this protocol provides a framework for module preservation analysis in paired datasets, enabling researchers to identify which gene co-expression modules are conserved or disrupted between conditions, thereby advancing our understanding of disease-specific vs. universal biological processes. Key features • Presents a step-by-step WGCNA protocol with module preservation and functional enrichment analysis [1,2] using TCGA cancer data, demonstrating network differences between normal and tumor tissues. • Preprocesses gene expression data and conducts downstream analysis for constructed networks. • Requires 2-3 h hands-on time and 8-12 h total computational time, depending on dataset size and permutation number used for module preservation analysis.</p>\",\"PeriodicalId\":93907,\"journal\":{\"name\":\"Bio-protocol\",\"volume\":\"15 18\",\"pages\":\"e5447\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-protocol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21769/BioProtoc.5447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

加权基因共表达网络分析(Weighted gene co-expression network analysis, WGCNA)广泛应用于转录组学研究,以识别高度相关的基因群,有助于了解疾病机制。尽管存在许多基于基因表达数据构建WGCNA网络的协议,但许多协议都侧重于单个数据集,而没有解决如何比较不同条件下模块的稳定性。在这里,我们提出了一个在配对肿瘤和正常数据集中构建和比较WGCNA模块的方案,从而能够识别参与核心生物学过程和与癌症发病机制特异性相关的模块。通过结合模块保存分析,这种方法使研究人员能够更深入地了解口腔癌以及其他疾病的分子基础。总体而言,该方案为配对数据集中的模块保存分析提供了一个框架,使研究人员能够确定哪些基因共表达模块在不同条件下被保留或破坏,从而促进我们对疾病特异性与普遍生物学过程的理解。•使用TCGA癌症数据,提出了一个循序渐进的WGCNA协议,包括模块保存和功能富集分析[1,2],展示了正常组织和肿瘤组织之间的网络差异。•对基因表达数据进行预处理,对构建的网络进行下游分析。•需要2-3小时的动手时间和8-12小时的总计算时间,这取决于数据集大小和用于模块保存分析的排列数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Protocol for Weighted Gene Co-expression Network Analysis With Module Preservation and Functional Enrichment Analysis for Tumor and Normal Transcriptomic Data.

Weighted gene co-expression network analysis (WGCNA) is widely used in transcriptomic studies to identify groups of highly correlated genes, aiding in the understanding of disease mechanisms. Although numerous protocols exist for constructing WGCNA networks from gene expression data, many focus on single datasets and do not address how to compare module stability across conditions. Here, we present a protocol for constructing and comparing WGCNA modules in paired tumor and normal datasets, enabling the identification of modules involved in both core biological processes and those specifically related to cancer pathogenesis. By incorporating module preservation analysis, this approach allows researchers to gain deeper insights into the molecular underpinnings of oral cancer, as well as other diseases. Overall, this protocol provides a framework for module preservation analysis in paired datasets, enabling researchers to identify which gene co-expression modules are conserved or disrupted between conditions, thereby advancing our understanding of disease-specific vs. universal biological processes. Key features • Presents a step-by-step WGCNA protocol with module preservation and functional enrichment analysis [1,2] using TCGA cancer data, demonstrating network differences between normal and tumor tissues. • Preprocesses gene expression data and conducts downstream analysis for constructed networks. • Requires 2-3 h hands-on time and 8-12 h total computational time, depending on dataset size and permutation number used for module preservation analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信