SHREC 2025:蛋白质表面形状检索包括静电电位。

ArXiv Pub Date : 2025-09-16
Taher Yacoub, Camille Depenveiller, Atsushi Tatsuma, Tin Barisin, Eugen Rusakov, Udo Göbel, Yuxu Peng, Shiqiang Deng, Yuki Kagaya, Joon Hong Park, Daisuke Kihara, Marco Guerra, Giorgio Palmieri, Andrea Ranieri, Ulderico Fugacci, Silvia Biasotti, Ruiwen He, Halim Benhabiles, Adnane Cabani, Karim Hammoudi, Haotian Li, Hao Huang, Chunyan Li, Alireza Tehrani, Fanwang Meng, Farnaz Heidar-Zadeh, Tuan-Anh Yang, Matthieu Montes
{"title":"SHREC 2025:蛋白质表面形状检索包括静电电位。","authors":"Taher Yacoub, Camille Depenveiller, Atsushi Tatsuma, Tin Barisin, Eugen Rusakov, Udo Göbel, Yuxu Peng, Shiqiang Deng, Yuki Kagaya, Joon Hong Park, Daisuke Kihara, Marco Guerra, Giorgio Palmieri, Andrea Ranieri, Ulderico Fugacci, Silvia Biasotti, Ruiwen He, Halim Benhabiles, Adnane Cabani, Karim Hammoudi, Haotian Li, Hao Huang, Chunyan Li, Alireza Tehrani, Fanwang Meng, Farnaz Heidar-Zadeh, Tuan-Anh Yang, Matthieu Montes","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This SHREC 2025 track dedicated to protein surface shape retrieval involved 9 participating teams. We evaluated the performance in retrieval of 15 proposed methods on a large dataset of 11,565 protein surfaces with calculated electrostatic potential (a key molecular surface descriptor). The performance in retrieval of the proposed methods was evaluated through different metrics (Accuracy, Balanced accuracy, F1 score, Precision and Recall). The best retrieval performance was achieved by the proposed methods that used the electrostatic potential complementary to molecular surface shape. This observation was also valid for classes with limited data which highlights the importance of taking into account additional molecular surface descriptors.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458584/pdf/","citationCount":"0","resultStr":"{\"title\":\"SHREC 2025: Protein Surface Shape Retrieval including Electrostatic potential.\",\"authors\":\"Taher Yacoub, Camille Depenveiller, Atsushi Tatsuma, Tin Barisin, Eugen Rusakov, Udo Göbel, Yuxu Peng, Shiqiang Deng, Yuki Kagaya, Joon Hong Park, Daisuke Kihara, Marco Guerra, Giorgio Palmieri, Andrea Ranieri, Ulderico Fugacci, Silvia Biasotti, Ruiwen He, Halim Benhabiles, Adnane Cabani, Karim Hammoudi, Haotian Li, Hao Huang, Chunyan Li, Alireza Tehrani, Fanwang Meng, Farnaz Heidar-Zadeh, Tuan-Anh Yang, Matthieu Montes\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This SHREC 2025 track dedicated to protein surface shape retrieval involved 9 participating teams. We evaluated the performance in retrieval of 15 proposed methods on a large dataset of 11,565 protein surfaces with calculated electrostatic potential (a key molecular surface descriptor). The performance in retrieval of the proposed methods was evaluated through different metrics (Accuracy, Balanced accuracy, F1 score, Precision and Recall). The best retrieval performance was achieved by the proposed methods that used the electrostatic potential complementary to molecular surface shape. This observation was also valid for classes with limited data which highlights the importance of taking into account additional molecular surface descriptors.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458584/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这个致力于蛋白质表面形状检索的SHREC 2025轨道涉及9个参与团队。我们在11,555个蛋白质表面的大型数据集上评估了15种拟议方法的检索性能,这些数据集具有计算的静电势(关键的分子表面描述符)。通过不同的指标(准确率、平衡准确率、F1分数、精度和召回率)来评估所提出方法的检索性能。利用静电势与分子表面形状互补的方法获得了最佳的检索性能。这一观察结果也适用于数据有限的类别,这突出了考虑额外分子表面描述符的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SHREC 2025: Protein Surface Shape Retrieval including Electrostatic potential.

This SHREC 2025 track dedicated to protein surface shape retrieval involved 9 participating teams. We evaluated the performance in retrieval of 15 proposed methods on a large dataset of 11,565 protein surfaces with calculated electrostatic potential (a key molecular surface descriptor). The performance in retrieval of the proposed methods was evaluated through different metrics (Accuracy, Balanced accuracy, F1 score, Precision and Recall). The best retrieval performance was achieved by the proposed methods that used the electrostatic potential complementary to molecular surface shape. This observation was also valid for classes with limited data which highlights the importance of taking into account additional molecular surface descriptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信