绘制胰腺癌的蛋白质组学景观:预后洞察和亚型分层。

IF 3.3 Q3 ONCOLOGY
Adel T Aref, Jason Grealey, Mohashin Pathan, Zainab Noor, Asim Anees, Akm Azad, Daniela Lee Smith, Erin M Humphries, Daniel Bucio-Noble, Jennifer Ms Koh, Erin Sykes, Steven G Williams, Ruth J Lyons, Natasha Lucas, Dylan Xavier, Sumit Sahni, Anubhav Mittal, Jaswinder S Samra, John V Pearson, Nicola Waddell, Olga Kondrashova, Angela Chou, Loretta Sioson, Amy Sheen, Australian Pancreatic Cancer Genome Initiative Apgi, Peter G Hains, Phillip J Robinson, Qing Zhong, Roger R Reddel, Anthony J Gill
{"title":"绘制胰腺癌的蛋白质组学景观:预后洞察和亚型分层。","authors":"Adel T Aref, Jason Grealey, Mohashin Pathan, Zainab Noor, Asim Anees, Akm Azad, Daniela Lee Smith, Erin M Humphries, Daniel Bucio-Noble, Jennifer Ms Koh, Erin Sykes, Steven G Williams, Ruth J Lyons, Natasha Lucas, Dylan Xavier, Sumit Sahni, Anubhav Mittal, Jaswinder S Samra, John V Pearson, Nicola Waddell, Olga Kondrashova, Angela Chou, Loretta Sioson, Amy Sheen, Australian Pancreatic Cancer Genome Initiative Apgi, Peter G Hains, Phillip J Robinson, Qing Zhong, Roger R Reddel, Anthony J Gill","doi":"10.1158/2767-9764.CRC-25-0229","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy that lacks reliable biomarkers to guide treatment decisions. Effective prognostic tools are needed to improve its clinical management. We conducted a comprehensive proteomic analysis on 115 PDA patient samples with matched adjacent normal tissue. Differential abundance and pathway analyses identified upregulated proteins and pathways within key subgroups. Unsupervised consensus clustering was used to establish a proteomic-based classification of PDA subtypes. A protein-based risk score was developed and validated using multicox regression analyses with LASSO regularization. A 20-protein diagnostic panel was identified (LGALS1, ANXA2, LGALS3BP, CTSD, S100P, COL12A1, SFN, THBS2, CTHRC1, THBS1, SERPINB5, LAMC2, POSTN, CEACAM6, CTSE, PLEC, PKM, S100A11, TAGLN2, ALDOA). Consensus clustering analysis identified four prognostic proteomic subtypes. Subtypes with poorer prognoses exhibited upregulation of neutrophil degranulation, extracellular matrix remodeling, focal adhesion, Mesenchymal Epithelial Transition, collagen formation, and PI3K-Akt-mTOR-related pathways, indicating a predominance of basal-like and activated stromal features. In tumors with Homologous Recombination Deficiency or COSMIC Signature-3, several immune-related proteins were enriched. An 18-protein (PURB, SDCBP2, CD2BP2, GALM, SERPINA3, OAS3, FAN1, ZPR1, KRT2, NUDT2, SMNDC1, SERPINA4, CUTA, WDR36, POSTN, CLEC11A, PEX14, and PI4KA) risk score demonstrated independent prognostic significance for overall survival, and recurrence, and was validated in an independent proteomic dataset generated using a different proteomic technology. This study introduces four novel prognostic PDA subtypes and an 18-protein risk score, validated in an independent dataset, which show promise for improving survival prediction and could serve as a valuable tool for personalized treatment guidance.</p>","PeriodicalId":72516,"journal":{"name":"Cancer research communications","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping the Proteomic Landscape of Pancreatic Cancer: Prognostic Insights and Subtype Stratification.\",\"authors\":\"Adel T Aref, Jason Grealey, Mohashin Pathan, Zainab Noor, Asim Anees, Akm Azad, Daniela Lee Smith, Erin M Humphries, Daniel Bucio-Noble, Jennifer Ms Koh, Erin Sykes, Steven G Williams, Ruth J Lyons, Natasha Lucas, Dylan Xavier, Sumit Sahni, Anubhav Mittal, Jaswinder S Samra, John V Pearson, Nicola Waddell, Olga Kondrashova, Angela Chou, Loretta Sioson, Amy Sheen, Australian Pancreatic Cancer Genome Initiative Apgi, Peter G Hains, Phillip J Robinson, Qing Zhong, Roger R Reddel, Anthony J Gill\",\"doi\":\"10.1158/2767-9764.CRC-25-0229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy that lacks reliable biomarkers to guide treatment decisions. Effective prognostic tools are needed to improve its clinical management. We conducted a comprehensive proteomic analysis on 115 PDA patient samples with matched adjacent normal tissue. Differential abundance and pathway analyses identified upregulated proteins and pathways within key subgroups. Unsupervised consensus clustering was used to establish a proteomic-based classification of PDA subtypes. A protein-based risk score was developed and validated using multicox regression analyses with LASSO regularization. A 20-protein diagnostic panel was identified (LGALS1, ANXA2, LGALS3BP, CTSD, S100P, COL12A1, SFN, THBS2, CTHRC1, THBS1, SERPINB5, LAMC2, POSTN, CEACAM6, CTSE, PLEC, PKM, S100A11, TAGLN2, ALDOA). Consensus clustering analysis identified four prognostic proteomic subtypes. Subtypes with poorer prognoses exhibited upregulation of neutrophil degranulation, extracellular matrix remodeling, focal adhesion, Mesenchymal Epithelial Transition, collagen formation, and PI3K-Akt-mTOR-related pathways, indicating a predominance of basal-like and activated stromal features. In tumors with Homologous Recombination Deficiency or COSMIC Signature-3, several immune-related proteins were enriched. An 18-protein (PURB, SDCBP2, CD2BP2, GALM, SERPINA3, OAS3, FAN1, ZPR1, KRT2, NUDT2, SMNDC1, SERPINA4, CUTA, WDR36, POSTN, CLEC11A, PEX14, and PI4KA) risk score demonstrated independent prognostic significance for overall survival, and recurrence, and was validated in an independent proteomic dataset generated using a different proteomic technology. This study introduces four novel prognostic PDA subtypes and an 18-protein risk score, validated in an independent dataset, which show promise for improving survival prediction and could serve as a valuable tool for personalized treatment guidance.</p>\",\"PeriodicalId\":72516,\"journal\":{\"name\":\"Cancer research communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/2767-9764.CRC-25-0229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2767-9764.CRC-25-0229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胰腺导管腺癌(PDA)是一种侵袭性恶性肿瘤,缺乏可靠的生物标志物来指导治疗决策。需要有效的预后工具来改善其临床管理。我们对115例PDA患者样本与匹配的邻近正常组织进行了全面的蛋白质组学分析。差异丰度和通路分析确定了关键亚群中的上调蛋白和通路。无监督共识聚类用于建立基于蛋白质组学的PDA亚型分类。使用LASSO正则化的多cox回归分析开发并验证了基于蛋白质的风险评分。鉴定出20个蛋白诊断组(LGALS1、ANXA2、LGALS3BP、CTSD、S100P、COL12A1、SFN、THBS2、CTHRC1、THBS1、SERPINB5、LAMC2、POSTN、CEACAM6、CTSE、PLEC、PKM、S100A11、TAGLN2、ALDOA)。共识聚类分析确定了四种预后蛋白质组亚型。预后较差的亚型表现出中性粒细胞脱颗粒、细胞外基质重塑、局灶性粘连、间质上皮转化、胶原形成和pi3k - akt - mtor相关通路的上调,表明基底样和活化的基质特征占主导地位。在同源重组缺陷(Homologous Recombination Deficiency)或COSMIC Signature-3的肿瘤中,几种免疫相关蛋白富集。18蛋白(PURB、SDCBP2、CD2BP2、GALM、SERPINA3、OAS3、FAN1、ZPR1、KRT2、NUDT2、SMNDC1、SERPINA4、CUTA、WDR36、POSTN、cle11a、PEX14和PI4KA)风险评分对总生存和复发具有独立的预后意义,并在使用不同蛋白质组学技术生成的独立蛋白质组学数据集中得到验证。本研究引入了四种新的预后PDA亚型和18蛋白风险评分,并在独立数据集中进行了验证,显示出改善生存预测的希望,并可作为个性化治疗指导的有价值工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping the Proteomic Landscape of Pancreatic Cancer: Prognostic Insights and Subtype Stratification.

Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy that lacks reliable biomarkers to guide treatment decisions. Effective prognostic tools are needed to improve its clinical management. We conducted a comprehensive proteomic analysis on 115 PDA patient samples with matched adjacent normal tissue. Differential abundance and pathway analyses identified upregulated proteins and pathways within key subgroups. Unsupervised consensus clustering was used to establish a proteomic-based classification of PDA subtypes. A protein-based risk score was developed and validated using multicox regression analyses with LASSO regularization. A 20-protein diagnostic panel was identified (LGALS1, ANXA2, LGALS3BP, CTSD, S100P, COL12A1, SFN, THBS2, CTHRC1, THBS1, SERPINB5, LAMC2, POSTN, CEACAM6, CTSE, PLEC, PKM, S100A11, TAGLN2, ALDOA). Consensus clustering analysis identified four prognostic proteomic subtypes. Subtypes with poorer prognoses exhibited upregulation of neutrophil degranulation, extracellular matrix remodeling, focal adhesion, Mesenchymal Epithelial Transition, collagen formation, and PI3K-Akt-mTOR-related pathways, indicating a predominance of basal-like and activated stromal features. In tumors with Homologous Recombination Deficiency or COSMIC Signature-3, several immune-related proteins were enriched. An 18-protein (PURB, SDCBP2, CD2BP2, GALM, SERPINA3, OAS3, FAN1, ZPR1, KRT2, NUDT2, SMNDC1, SERPINA4, CUTA, WDR36, POSTN, CLEC11A, PEX14, and PI4KA) risk score demonstrated independent prognostic significance for overall survival, and recurrence, and was validated in an independent proteomic dataset generated using a different proteomic technology. This study introduces four novel prognostic PDA subtypes and an 18-protein risk score, validated in an independent dataset, which show promise for improving survival prediction and could serve as a valuable tool for personalized treatment guidance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信