使用Cream和Bosso算法的双滤镜x射线图像增强:跨解剖区域的对比度和熵优化。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Antonio Rienzo, Miguel Bustamante, Ricardo Staub, Gastón Lefranc
{"title":"使用Cream和Bosso算法的双滤镜x射线图像增强:跨解剖区域的对比度和熵优化。","authors":"Antonio Rienzo, Miguel Bustamante, Ricardo Staub, Gastón Lefranc","doi":"10.3390/jimaging11090291","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a dual-filter X-ray image enhancement technique designed to elevate the quality of radiographic images of the knee, breast, and wrist, employing the Cream and Bosso algorithms. Our quantitative analysis reveals significant improvements in bone, edge definition, and contrast (<i>p</i> < 0.001). The processing parameters are derived from the relationship between entropy metrics and the filtering parameter d. The results demonstrate contrast enhancements for knee radiographs and for wrist radiographs, while maintaining acceptable noise levels. Comparisons are made with CLAHE techniques, unsharp masking, and deep-learning-based models. This method is a reliable and computationally efficient approach to enhancing clinical diagnosis in resource-limited settings, thereby improving robustness and interpretability.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470700/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual-Filter X-Ray Image Enhancement Using Cream and Bosso Algorithms: Contrast and Entropy Optimization Across Anatomical Regions.\",\"authors\":\"Antonio Rienzo, Miguel Bustamante, Ricardo Staub, Gastón Lefranc\",\"doi\":\"10.3390/jimaging11090291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces a dual-filter X-ray image enhancement technique designed to elevate the quality of radiographic images of the knee, breast, and wrist, employing the Cream and Bosso algorithms. Our quantitative analysis reveals significant improvements in bone, edge definition, and contrast (<i>p</i> < 0.001). The processing parameters are derived from the relationship between entropy metrics and the filtering parameter d. The results demonstrate contrast enhancements for knee radiographs and for wrist radiographs, while maintaining acceptable noise levels. Comparisons are made with CLAHE techniques, unsharp masking, and deep-learning-based models. This method is a reliable and computationally efficient approach to enhancing clinical diagnosis in resource-limited settings, thereby improving robustness and interpretability.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470700/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11090291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种双滤光片x射线图像增强技术,旨在提高膝关节,乳房和手腕的x射线图像质量,采用Cream和Bosso算法。我们的定量分析显示骨骼、边缘清晰度和对比度有显著改善(p < 0.001)。处理参数来源于熵度量和滤波参数d之间的关系。结果表明,在保持可接受的噪声水平的同时,膝关节x线片和腕部x线片的对比度增强。与CLAHE技术、非锐利掩蔽和基于深度学习的模型进行了比较。该方法是一种可靠且计算效率高的方法,可以在资源有限的情况下增强临床诊断,从而提高鲁棒性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Filter X-Ray Image Enhancement Using Cream and Bosso Algorithms: Contrast and Entropy Optimization Across Anatomical Regions.

Dual-Filter X-Ray Image Enhancement Using Cream and Bosso Algorithms: Contrast and Entropy Optimization Across Anatomical Regions.

Dual-Filter X-Ray Image Enhancement Using Cream and Bosso Algorithms: Contrast and Entropy Optimization Across Anatomical Regions.

Dual-Filter X-Ray Image Enhancement Using Cream and Bosso Algorithms: Contrast and Entropy Optimization Across Anatomical Regions.

This study introduces a dual-filter X-ray image enhancement technique designed to elevate the quality of radiographic images of the knee, breast, and wrist, employing the Cream and Bosso algorithms. Our quantitative analysis reveals significant improvements in bone, edge definition, and contrast (p < 0.001). The processing parameters are derived from the relationship between entropy metrics and the filtering parameter d. The results demonstrate contrast enhancements for knee radiographs and for wrist radiographs, while maintaining acceptable noise levels. Comparisons are made with CLAHE techniques, unsharp masking, and deep-learning-based models. This method is a reliable and computationally efficient approach to enhancing clinical diagnosis in resource-limited settings, thereby improving robustness and interpretability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信