{"title":"分段和恢复:防御对象探测器对抗对抗性补丁攻击。","authors":"Haotian Gu, Hamidreza Jafarnejadsani","doi":"10.3390/jimaging11090316","DOIUrl":null,"url":null,"abstract":"<p><p>Object detection is used to automatically identify and locate specific objects within images or videos for applications like autonomous driving, security surveillance, and medical imaging. Protecting object detection models against adversarial attacks, particularly malicious patches, is crucial to ensure reliable and safe performance in safety-critical applications, where misdetections can lead to severe consequences. Existing defenses against patch attacks are primarily designed for stationary scenes and struggle against adversarial image patches that vary in scale, position, and orientation in dynamic environments.In this paper, we introduce SAR, a patch-agnostic defense scheme based on image preprocessing that does not require additional model training. By integration of the patch-agnostic detection frontend with an additional broken pixel restoration backend, Segment and Recover (SAR) is developed for the large-mask-covered object-hiding attack. Our approach breaks the limitation of the patch scale, shape, and location, accurately localizes the adversarial patch on the frontend, and restores the broken pixel on the backend. Our evaluations of the clean performance demonstrate that SAR is compatible with a variety of pretrained object detectors. Moreover, SAR exhibits notable resilience improvements over state-of-the-art methods evaluated in this paper. Our comprehensive evaluation studies involve diverse patch types, such as localized-noise, printable, visible, and adaptive adversarial patches.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470975/pdf/","citationCount":"0","resultStr":"{\"title\":\"Segment and Recover: Defending Object Detectors Against Adversarial Patch Attacks.\",\"authors\":\"Haotian Gu, Hamidreza Jafarnejadsani\",\"doi\":\"10.3390/jimaging11090316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Object detection is used to automatically identify and locate specific objects within images or videos for applications like autonomous driving, security surveillance, and medical imaging. Protecting object detection models against adversarial attacks, particularly malicious patches, is crucial to ensure reliable and safe performance in safety-critical applications, where misdetections can lead to severe consequences. Existing defenses against patch attacks are primarily designed for stationary scenes and struggle against adversarial image patches that vary in scale, position, and orientation in dynamic environments.In this paper, we introduce SAR, a patch-agnostic defense scheme based on image preprocessing that does not require additional model training. By integration of the patch-agnostic detection frontend with an additional broken pixel restoration backend, Segment and Recover (SAR) is developed for the large-mask-covered object-hiding attack. Our approach breaks the limitation of the patch scale, shape, and location, accurately localizes the adversarial patch on the frontend, and restores the broken pixel on the backend. Our evaluations of the clean performance demonstrate that SAR is compatible with a variety of pretrained object detectors. Moreover, SAR exhibits notable resilience improvements over state-of-the-art methods evaluated in this paper. Our comprehensive evaluation studies involve diverse patch types, such as localized-noise, printable, visible, and adaptive adversarial patches.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470975/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11090316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Segment and Recover: Defending Object Detectors Against Adversarial Patch Attacks.
Object detection is used to automatically identify and locate specific objects within images or videos for applications like autonomous driving, security surveillance, and medical imaging. Protecting object detection models against adversarial attacks, particularly malicious patches, is crucial to ensure reliable and safe performance in safety-critical applications, where misdetections can lead to severe consequences. Existing defenses against patch attacks are primarily designed for stationary scenes and struggle against adversarial image patches that vary in scale, position, and orientation in dynamic environments.In this paper, we introduce SAR, a patch-agnostic defense scheme based on image preprocessing that does not require additional model training. By integration of the patch-agnostic detection frontend with an additional broken pixel restoration backend, Segment and Recover (SAR) is developed for the large-mask-covered object-hiding attack. Our approach breaks the limitation of the patch scale, shape, and location, accurately localizes the adversarial patch on the frontend, and restores the broken pixel on the backend. Our evaluations of the clean performance demonstrate that SAR is compatible with a variety of pretrained object detectors. Moreover, SAR exhibits notable resilience improvements over state-of-the-art methods evaluated in this paper. Our comprehensive evaluation studies involve diverse patch types, such as localized-noise, printable, visible, and adaptive adversarial patches.