通过迁移学习增强乳房x光检查中的病变检测。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Beibit Abdikenov, Dimash Rakishev, Yerzhan Orazayev, Tomiris Zhaksylyk
{"title":"通过迁移学习增强乳房x光检查中的病变检测。","authors":"Beibit Abdikenov, Dimash Rakishev, Yerzhan Orazayev, Tomiris Zhaksylyk","doi":"10.3390/jimaging11090314","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection of breast cancer via mammography enhances patient survival rates, prompting this study to assess object detection models-Cascade R-CNN, YOLOv12 (S, L, and X variants), RTMDet-X, and RT-DETR-X-for detecting masses and calcifications across four public datasets (INbreast, CBIS-DDSM, VinDr-Mammo, and EMBED). The evaluation employs a standardized preprocessing approach (CLAHE, cropping) and augmentation (rotations, scaling), with transfer learning tested by training on combined datasets (e.g., INbreast + CBIS-DDSM) and validating on held-out sets (e.g., VinDr-Mammo). Performance is measured using precision, recall, mean Average Precision at IoU 0.5 (mAP50), and F1-score. YOLOv12-L excels in mass detection with an mAP50 of 0.963 and F1-score up to 0.917 on INbreast, while RTMDet-X achieves an mAP50 of 0.697 on combined datasets with transfer learning. Preprocessing improves mAP50 by up to 0.209, and transfer learning elevates INbreast performance to an mAP50 of 0.995, though it incurs 5-11% drops on CBIS-DDSM (0.566 to 0.447) and VinDr-Mammo (0.59 to 0.5) due to domain shifts. EMBED yields a low mAP50 of 0.306 due to label inconsistencies, and calcification detection remains weak (mAP50 < 0.116), highlighting the value of high-capacity models, preprocessing, and augmentation for mass detection while identifying calcification detection and domain adaptation as key areas for future investigation.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470960/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Breast Lesion Detection in Mammograms via Transfer Learning.\",\"authors\":\"Beibit Abdikenov, Dimash Rakishev, Yerzhan Orazayev, Tomiris Zhaksylyk\",\"doi\":\"10.3390/jimaging11090314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early detection of breast cancer via mammography enhances patient survival rates, prompting this study to assess object detection models-Cascade R-CNN, YOLOv12 (S, L, and X variants), RTMDet-X, and RT-DETR-X-for detecting masses and calcifications across four public datasets (INbreast, CBIS-DDSM, VinDr-Mammo, and EMBED). The evaluation employs a standardized preprocessing approach (CLAHE, cropping) and augmentation (rotations, scaling), with transfer learning tested by training on combined datasets (e.g., INbreast + CBIS-DDSM) and validating on held-out sets (e.g., VinDr-Mammo). Performance is measured using precision, recall, mean Average Precision at IoU 0.5 (mAP50), and F1-score. YOLOv12-L excels in mass detection with an mAP50 of 0.963 and F1-score up to 0.917 on INbreast, while RTMDet-X achieves an mAP50 of 0.697 on combined datasets with transfer learning. Preprocessing improves mAP50 by up to 0.209, and transfer learning elevates INbreast performance to an mAP50 of 0.995, though it incurs 5-11% drops on CBIS-DDSM (0.566 to 0.447) and VinDr-Mammo (0.59 to 0.5) due to domain shifts. EMBED yields a low mAP50 of 0.306 due to label inconsistencies, and calcification detection remains weak (mAP50 < 0.116), highlighting the value of high-capacity models, preprocessing, and augmentation for mass detection while identifying calcification detection and domain adaptation as key areas for future investigation.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470960/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11090314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过乳房X光检查早期发现乳腺癌可以提高患者的生存率,这促使本研究评估目标检测模型——cascade R-CNN、YOLOv12 (S、L和X变体)、RTMDet-X和rt - detr -X,用于在四个公共数据集(INbreast、cis - ddsm、VinDr-Mammo和EMBED)中检测肿块和钙化。评估采用标准化的预处理方法(CLAHE,裁剪)和增强(旋转,缩放),并通过在组合数据集(例如,INbreast + CBIS-DDSM)上训练和在保留集(例如,VinDr-Mammo)上验证来测试迁移学习。性能使用精度、召回率、IoU 0.5 (mAP50)的平均平均精度和f1分数来衡量。YOLOv12-L在质量检测方面表现优异,在INbreast上的mAP50为0.963,F1-score高达0.917,而rtmdt - x在结合迁移学习的数据集上的mAP50为0.697。预处理将mAP50提高了0.209,迁移学习将INbreast的性能提高到0.995,尽管由于域移位,它会导致cis - ddsm(0.566至0.447)和vindr - mamo(0.59至0.5)下降5-11%。由于标签不一致,EMBED的mAP50较低,为0.306,而钙化检测仍然很弱(mAP50 < 0.116),这突出了大容量模型、预处理和大规模检测增强的价值,同时确定了钙化检测和域适应是未来研究的关键领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Breast Lesion Detection in Mammograms via Transfer Learning.

Early detection of breast cancer via mammography enhances patient survival rates, prompting this study to assess object detection models-Cascade R-CNN, YOLOv12 (S, L, and X variants), RTMDet-X, and RT-DETR-X-for detecting masses and calcifications across four public datasets (INbreast, CBIS-DDSM, VinDr-Mammo, and EMBED). The evaluation employs a standardized preprocessing approach (CLAHE, cropping) and augmentation (rotations, scaling), with transfer learning tested by training on combined datasets (e.g., INbreast + CBIS-DDSM) and validating on held-out sets (e.g., VinDr-Mammo). Performance is measured using precision, recall, mean Average Precision at IoU 0.5 (mAP50), and F1-score. YOLOv12-L excels in mass detection with an mAP50 of 0.963 and F1-score up to 0.917 on INbreast, while RTMDet-X achieves an mAP50 of 0.697 on combined datasets with transfer learning. Preprocessing improves mAP50 by up to 0.209, and transfer learning elevates INbreast performance to an mAP50 of 0.995, though it incurs 5-11% drops on CBIS-DDSM (0.566 to 0.447) and VinDr-Mammo (0.59 to 0.5) due to domain shifts. EMBED yields a low mAP50 of 0.306 due to label inconsistencies, and calcification detection remains weak (mAP50 < 0.116), highlighting the value of high-capacity models, preprocessing, and augmentation for mass detection while identifying calcification detection and domain adaptation as key areas for future investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信