{"title":"E-CMCA和lstm增强框架在前列腺癌的跨模态MRI-TRUS登记。","authors":"Ciliang Shao, Ruijin Xue, Lixu Gu","doi":"10.3390/jimaging11090292","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate registration of MRI and TRUS images is crucial for effective prostate cancer diagnosis and biopsy guidance, yet modality differences and non-rigid deformations pose significant challenges, especially in dynamic imaging. This study presents a novel cross-modal MRI-TRUS registration framework, leveraging a dual-encoder architecture with an Enhanced Cross-Modal Channel Attention (E-CMCA) module and a LSTM-Based Spatial Deformation Modeling Module. The E-CMCA module efficiently extracts and integrates multi-scale cross-modal features, while the LSTM-Based Spatial Deformation Modeling Module models temporal dynamics by processing depth-sliced 3D deformation fields as sequential data. A VecInt operation ensures smooth, diffeomorphic transformations, and a FuseConv layer enhances feature integration for precise alignment. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model significantly improves registration accuracy and performs robustly in both static 3D and dynamic 4D registration tasks. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model achieves a DSC of 0.865, RDSC of 0.898, TRE of 2.278 mm, and RTRE of 1.293, surpassing state-of-the-art methods and performing robustly in both static 3D and dynamic 4D registration tasks.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471084/pdf/","citationCount":"0","resultStr":"{\"title\":\"E-CMCA and LSTM-Enhanced Framework for Cross-Modal MRI-TRUS Registration in Prostate Cancer.\",\"authors\":\"Ciliang Shao, Ruijin Xue, Lixu Gu\",\"doi\":\"10.3390/jimaging11090292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate registration of MRI and TRUS images is crucial for effective prostate cancer diagnosis and biopsy guidance, yet modality differences and non-rigid deformations pose significant challenges, especially in dynamic imaging. This study presents a novel cross-modal MRI-TRUS registration framework, leveraging a dual-encoder architecture with an Enhanced Cross-Modal Channel Attention (E-CMCA) module and a LSTM-Based Spatial Deformation Modeling Module. The E-CMCA module efficiently extracts and integrates multi-scale cross-modal features, while the LSTM-Based Spatial Deformation Modeling Module models temporal dynamics by processing depth-sliced 3D deformation fields as sequential data. A VecInt operation ensures smooth, diffeomorphic transformations, and a FuseConv layer enhances feature integration for precise alignment. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model significantly improves registration accuracy and performs robustly in both static 3D and dynamic 4D registration tasks. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model achieves a DSC of 0.865, RDSC of 0.898, TRE of 2.278 mm, and RTRE of 1.293, surpassing state-of-the-art methods and performing robustly in both static 3D and dynamic 4D registration tasks.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471084/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11090292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
E-CMCA and LSTM-Enhanced Framework for Cross-Modal MRI-TRUS Registration in Prostate Cancer.
Accurate registration of MRI and TRUS images is crucial for effective prostate cancer diagnosis and biopsy guidance, yet modality differences and non-rigid deformations pose significant challenges, especially in dynamic imaging. This study presents a novel cross-modal MRI-TRUS registration framework, leveraging a dual-encoder architecture with an Enhanced Cross-Modal Channel Attention (E-CMCA) module and a LSTM-Based Spatial Deformation Modeling Module. The E-CMCA module efficiently extracts and integrates multi-scale cross-modal features, while the LSTM-Based Spatial Deformation Modeling Module models temporal dynamics by processing depth-sliced 3D deformation fields as sequential data. A VecInt operation ensures smooth, diffeomorphic transformations, and a FuseConv layer enhances feature integration for precise alignment. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model significantly improves registration accuracy and performs robustly in both static 3D and dynamic 4D registration tasks. Experiments on the μ-RegPro dataset from the MICCAI 2023 Challenge demonstrate that our model achieves a DSC of 0.865, RDSC of 0.898, TRE of 2.278 mm, and RTRE of 1.293, surpassing state-of-the-art methods and performing robustly in both static 3D and dynamic 4D registration tasks.