{"title":"78K参数的高效视网膜血管分割。","authors":"Zhigao Zeng, Jiakai Liu, Xianming Huang, Kaixi Luo, Xinpan Yuan, Yanhui Zhu","doi":"10.3390/jimaging11090306","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal vessel segmentation is critical for early diagnosis of diabetic retinopathy, yet existing deep models often compromise accuracy for complexity. We propose DSAE-Net, a lightweight dual-stage network that addresses this challenge by (1) introducing a Parameterized Cascaded W-shaped Architecture enabling progressive feature refinement with only 1% of the parameters of a standard U-Net; (2) designing a novel Skeleton Distance Loss (SDL) that overcomes boundary loss limitations by leveraging vessel skeletons to handle severe class imbalance; (3) developing a Cross-modal Fusion Attention (CMFA) module combining group convolutions and dynamic weighting to effectively expand receptive fields; and (4) proposing Coordinate Attention Gates (CAGs) to optimize skip connections via directional feature reweighting. Evaluated extensively on DRIVE, CHASE_DB1, HRF, and STARE datasets, DSAE-Net significantly reduces computational complexity while outperforming state-of-the-art lightweight models in segmentation accuracy. Its efficiency and robustness make DSAE-Net particularly suitable for real-time diagnostics in resource-constrained clinical settings.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470885/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Retinal Vessel Segmentation with 78K Parameters.\",\"authors\":\"Zhigao Zeng, Jiakai Liu, Xianming Huang, Kaixi Luo, Xinpan Yuan, Yanhui Zhu\",\"doi\":\"10.3390/jimaging11090306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinal vessel segmentation is critical for early diagnosis of diabetic retinopathy, yet existing deep models often compromise accuracy for complexity. We propose DSAE-Net, a lightweight dual-stage network that addresses this challenge by (1) introducing a Parameterized Cascaded W-shaped Architecture enabling progressive feature refinement with only 1% of the parameters of a standard U-Net; (2) designing a novel Skeleton Distance Loss (SDL) that overcomes boundary loss limitations by leveraging vessel skeletons to handle severe class imbalance; (3) developing a Cross-modal Fusion Attention (CMFA) module combining group convolutions and dynamic weighting to effectively expand receptive fields; and (4) proposing Coordinate Attention Gates (CAGs) to optimize skip connections via directional feature reweighting. Evaluated extensively on DRIVE, CHASE_DB1, HRF, and STARE datasets, DSAE-Net significantly reduces computational complexity while outperforming state-of-the-art lightweight models in segmentation accuracy. Its efficiency and robustness make DSAE-Net particularly suitable for real-time diagnostics in resource-constrained clinical settings.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470885/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11090306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Efficient Retinal Vessel Segmentation with 78K Parameters.
Retinal vessel segmentation is critical for early diagnosis of diabetic retinopathy, yet existing deep models often compromise accuracy for complexity. We propose DSAE-Net, a lightweight dual-stage network that addresses this challenge by (1) introducing a Parameterized Cascaded W-shaped Architecture enabling progressive feature refinement with only 1% of the parameters of a standard U-Net; (2) designing a novel Skeleton Distance Loss (SDL) that overcomes boundary loss limitations by leveraging vessel skeletons to handle severe class imbalance; (3) developing a Cross-modal Fusion Attention (CMFA) module combining group convolutions and dynamic weighting to effectively expand receptive fields; and (4) proposing Coordinate Attention Gates (CAGs) to optimize skip connections via directional feature reweighting. Evaluated extensively on DRIVE, CHASE_DB1, HRF, and STARE datasets, DSAE-Net significantly reduces computational complexity while outperforming state-of-the-art lightweight models in segmentation accuracy. Its efficiency and robustness make DSAE-Net particularly suitable for real-time diagnostics in resource-constrained clinical settings.