Huazhong Zhang, Jiaozhuo Wang, Xiaoguang Tu, Zhiyi Niu, Yu Wang
{"title":"基于多尺度特征融合和混合注意机制的对比学习驱动图像去雾。","authors":"Huazhong Zhang, Jiaozhuo Wang, Xiaoguang Tu, Zhiyi Niu, Yu Wang","doi":"10.3390/jimaging11090290","DOIUrl":null,"url":null,"abstract":"<p><p>Image dehazing is critical for visual enhancement and a wide range of computer vision applications. Despite significant advancements, challenges remain in preserving fine details and adapting to diverse, non-uniformly degraded scenes. To address these issues, we propose a novel image dehazing method that introduces a contrastive learning framework, enhanced by the InfoNCE loss, to improve model robustness. In this framework, hazy images are treated as negative samples and their clear counterparts as positive samples. By optimizing the InfoNCE loss, the model is trained to maximize the similarity between positive pairs and minimize that between negative pairs, thereby improving its ability to distinguish haze artifacts from intrinsic scene features and better preserving the structural integrity of images. In addition to contrastive learning, our method integrates a multi-scale dynamic feature fusion with a hybrid attention mechanism. Specifically, we introduce dynamically adjustable frequency band filters and refine the hybrid attention module to more effectively capture fine-grained, cross-scale image details. Extensive experiments on the RESIDE-6K and RS-Haze datasets demonstrate that our approach outperforms most existing methods, offering a promising solution for practical image dehazing applications.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470370/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contrastive Learning-Driven Image Dehazing with Multi-Scale Feature Fusion and Hybrid Attention Mechanism.\",\"authors\":\"Huazhong Zhang, Jiaozhuo Wang, Xiaoguang Tu, Zhiyi Niu, Yu Wang\",\"doi\":\"10.3390/jimaging11090290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image dehazing is critical for visual enhancement and a wide range of computer vision applications. Despite significant advancements, challenges remain in preserving fine details and adapting to diverse, non-uniformly degraded scenes. To address these issues, we propose a novel image dehazing method that introduces a contrastive learning framework, enhanced by the InfoNCE loss, to improve model robustness. In this framework, hazy images are treated as negative samples and their clear counterparts as positive samples. By optimizing the InfoNCE loss, the model is trained to maximize the similarity between positive pairs and minimize that between negative pairs, thereby improving its ability to distinguish haze artifacts from intrinsic scene features and better preserving the structural integrity of images. In addition to contrastive learning, our method integrates a multi-scale dynamic feature fusion with a hybrid attention mechanism. Specifically, we introduce dynamically adjustable frequency band filters and refine the hybrid attention module to more effectively capture fine-grained, cross-scale image details. Extensive experiments on the RESIDE-6K and RS-Haze datasets demonstrate that our approach outperforms most existing methods, offering a promising solution for practical image dehazing applications.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11090290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11090290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Contrastive Learning-Driven Image Dehazing with Multi-Scale Feature Fusion and Hybrid Attention Mechanism.
Image dehazing is critical for visual enhancement and a wide range of computer vision applications. Despite significant advancements, challenges remain in preserving fine details and adapting to diverse, non-uniformly degraded scenes. To address these issues, we propose a novel image dehazing method that introduces a contrastive learning framework, enhanced by the InfoNCE loss, to improve model robustness. In this framework, hazy images are treated as negative samples and their clear counterparts as positive samples. By optimizing the InfoNCE loss, the model is trained to maximize the similarity between positive pairs and minimize that between negative pairs, thereby improving its ability to distinguish haze artifacts from intrinsic scene features and better preserving the structural integrity of images. In addition to contrastive learning, our method integrates a multi-scale dynamic feature fusion with a hybrid attention mechanism. Specifically, we introduce dynamically adjustable frequency band filters and refine the hybrid attention module to more effectively capture fine-grained, cross-scale image details. Extensive experiments on the RESIDE-6K and RS-Haze datasets demonstrate that our approach outperforms most existing methods, offering a promising solution for practical image dehazing applications.