通过ALDH2/ARG2轴阻断抑制结直肠癌中的精氨酸代谢增强免疫检查点抑制剂

IF 5.5 2区 医学 Q1 ONCOLOGY
Lu Cai, Yonglong Cao, Jiawei Zhang, Kaiwen Xi, Aimin Li, Hong Zhang
{"title":"通过ALDH2/ARG2轴阻断抑制结直肠癌中的精氨酸代谢增强免疫检查点抑制剂","authors":"Lu Cai, Yonglong Cao, Jiawei Zhang, Kaiwen Xi, Aimin Li, Hong Zhang","doi":"10.1158/1535-7163.MCT-25-0404","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic reprogramming constitutes a key mechanism driving immunotherapy resistance in colorectal cancer (CRC), though the immunomodulatory role of L-arginine metabolism remains poorly defined. Through metabolomic profiling, we identified aldehyde dehydrogenase 2 (ALDH2) as a critical regulator depleting intracellular L-arginine pools in CRC cells. High Performance Liquid Chromatography (HPLC) analysis of cell supernatants further demonstrated that ALDH2 overexpression significantly diminishes extracellular L-arginine availability. Functionally, this arginine deficiency suppressed CD8+ T cell proliferation while inducing the attenuation of anti-tumor efficacy. Mechanistic studies revealed that ALDH2 upregulates Pre-B-Cell Leukemia Homeobox 3 (PBX3), which enhances arginase 2 (ARG2) transcription to promote L-arginine catabolism. This process suppresses glycolysis in CD8+ T cells, ultimately compromising their effector functions. Notably, ALDH2-high tumors exhibited resistance to immune checkpoint blockade (ICB), whereas combinatorial ARG2 inhibition and ICB therapy synergistically restored antitumor immunity. These findings nominate ARG2 as a novel therapeutic target and propose dual metabolic-immunologic intervention as a promising strategy for ICB-resistant CRC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibiting arginine metabolism via ALDH2/ARG2 axis blockade potentiates immune checkpoint inhibitors in colorectal cancer.\",\"authors\":\"Lu Cai, Yonglong Cao, Jiawei Zhang, Kaiwen Xi, Aimin Li, Hong Zhang\",\"doi\":\"10.1158/1535-7163.MCT-25-0404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic reprogramming constitutes a key mechanism driving immunotherapy resistance in colorectal cancer (CRC), though the immunomodulatory role of L-arginine metabolism remains poorly defined. Through metabolomic profiling, we identified aldehyde dehydrogenase 2 (ALDH2) as a critical regulator depleting intracellular L-arginine pools in CRC cells. High Performance Liquid Chromatography (HPLC) analysis of cell supernatants further demonstrated that ALDH2 overexpression significantly diminishes extracellular L-arginine availability. Functionally, this arginine deficiency suppressed CD8+ T cell proliferation while inducing the attenuation of anti-tumor efficacy. Mechanistic studies revealed that ALDH2 upregulates Pre-B-Cell Leukemia Homeobox 3 (PBX3), which enhances arginase 2 (ARG2) transcription to promote L-arginine catabolism. This process suppresses glycolysis in CD8+ T cells, ultimately compromising their effector functions. Notably, ALDH2-high tumors exhibited resistance to immune checkpoint blockade (ICB), whereas combinatorial ARG2 inhibition and ICB therapy synergistically restored antitumor immunity. These findings nominate ARG2 as a novel therapeutic target and propose dual metabolic-immunologic intervention as a promising strategy for ICB-resistant CRC.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-25-0404\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-25-0404","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

代谢重编程是驱动结直肠癌(CRC)免疫治疗耐药的关键机制,尽管l -精氨酸代谢的免疫调节作用仍不明确。通过代谢组学分析,我们发现醛脱氢酶2 (ALDH2)是CRC细胞中消耗细胞内l -精氨酸池的关键调节因子。细胞上清的高效液相色谱(HPLC)分析进一步表明,ALDH2过表达显著降低了细胞外l -精氨酸的可用性。在功能上,这种精氨酸缺乏抑制CD8+ T细胞的增殖,同时诱导抗肿瘤功效的衰减。机制研究表明,ALDH2上调前b细胞白血病同源盒3 (PBX3),从而增强精氨酸酶2 (ARG2)转录,促进l -精氨酸分解代谢。这一过程抑制了CD8+ T细胞的糖酵解,最终损害了它们的效应功能。值得注意的是,aldh2高的肿瘤表现出对免疫检查点阻断(ICB)的抵抗,而ARG2抑制和ICB联合治疗可协同恢复抗肿瘤免疫。这些发现表明ARG2是一个新的治疗靶点,并提出双重代谢-免疫干预作为治疗icb耐药结直肠癌的有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibiting arginine metabolism via ALDH2/ARG2 axis blockade potentiates immune checkpoint inhibitors in colorectal cancer.

Metabolic reprogramming constitutes a key mechanism driving immunotherapy resistance in colorectal cancer (CRC), though the immunomodulatory role of L-arginine metabolism remains poorly defined. Through metabolomic profiling, we identified aldehyde dehydrogenase 2 (ALDH2) as a critical regulator depleting intracellular L-arginine pools in CRC cells. High Performance Liquid Chromatography (HPLC) analysis of cell supernatants further demonstrated that ALDH2 overexpression significantly diminishes extracellular L-arginine availability. Functionally, this arginine deficiency suppressed CD8+ T cell proliferation while inducing the attenuation of anti-tumor efficacy. Mechanistic studies revealed that ALDH2 upregulates Pre-B-Cell Leukemia Homeobox 3 (PBX3), which enhances arginase 2 (ARG2) transcription to promote L-arginine catabolism. This process suppresses glycolysis in CD8+ T cells, ultimately compromising their effector functions. Notably, ALDH2-high tumors exhibited resistance to immune checkpoint blockade (ICB), whereas combinatorial ARG2 inhibition and ICB therapy synergistically restored antitumor immunity. These findings nominate ARG2 as a novel therapeutic target and propose dual metabolic-immunologic intervention as a promising strategy for ICB-resistant CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信