A N M Nafiz Abeer, Mehdi Boroumand, Isabelle Sermadiras, Jenna G Caldwell, Valentin Stanev, Neil Mody, Gilad Kaplan, James Savery, Rebecca Croasdale-Wood, Maryam Pouryahya
{"title":"加速抗体开发:基于序列和结构的模型,通过尺寸排斥色谱法预测可显影性。","authors":"A N M Nafiz Abeer, Mehdi Boroumand, Isabelle Sermadiras, Jenna G Caldwell, Valentin Stanev, Neil Mody, Gilad Kaplan, James Savery, Rebecca Croasdale-Wood, Maryam Pouryahya","doi":"10.1080/19420862.2025.2562997","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental screening for biopharmaceutical developability properties typically relies on resource-intensive, and time-consuming assays such as size exclusion chromatography (SEC). This study highlights the potential of in silico models to accelerate the screening process by exploring sequence and structure-based machine learning techniques. Specifically, we compared surrogate models based on pre-computed features extracted from sequence and predicted structure with sequence-based approaches using protein language models (PLMs) like ESM-2. In addition to different end-to-end fine-tuning strategies for PLM, we have also investigated the integration of the structural information of the antibodies into the prediction pipeline through graph neural networks (GNN). We applied these different methods for predicting protein aggregation propensity using a dataset of approximately 1200 Immunoglobulin G (IgG1) molecules. Through this empirical evaluation, our study identifies the most effective in silico approach for predicting developability properties for SEC assays, thereby adding insights to existing screening efforts for accelerating the antibody development process.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2562997"},"PeriodicalIF":7.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477876/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accelerating antibody development: sequence and structure-based models for predicting developability properties via size exclusion chromatography.\",\"authors\":\"A N M Nafiz Abeer, Mehdi Boroumand, Isabelle Sermadiras, Jenna G Caldwell, Valentin Stanev, Neil Mody, Gilad Kaplan, James Savery, Rebecca Croasdale-Wood, Maryam Pouryahya\",\"doi\":\"10.1080/19420862.2025.2562997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experimental screening for biopharmaceutical developability properties typically relies on resource-intensive, and time-consuming assays such as size exclusion chromatography (SEC). This study highlights the potential of in silico models to accelerate the screening process by exploring sequence and structure-based machine learning techniques. Specifically, we compared surrogate models based on pre-computed features extracted from sequence and predicted structure with sequence-based approaches using protein language models (PLMs) like ESM-2. In addition to different end-to-end fine-tuning strategies for PLM, we have also investigated the integration of the structural information of the antibodies into the prediction pipeline through graph neural networks (GNN). We applied these different methods for predicting protein aggregation propensity using a dataset of approximately 1200 Immunoglobulin G (IgG1) molecules. Through this empirical evaluation, our study identifies the most effective in silico approach for predicting developability properties for SEC assays, thereby adding insights to existing screening efforts for accelerating the antibody development process.</p>\",\"PeriodicalId\":18206,\"journal\":{\"name\":\"mAbs\",\"volume\":\"17 1\",\"pages\":\"2562997\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mAbs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2025.2562997\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2562997","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Accelerating antibody development: sequence and structure-based models for predicting developability properties via size exclusion chromatography.
Experimental screening for biopharmaceutical developability properties typically relies on resource-intensive, and time-consuming assays such as size exclusion chromatography (SEC). This study highlights the potential of in silico models to accelerate the screening process by exploring sequence and structure-based machine learning techniques. Specifically, we compared surrogate models based on pre-computed features extracted from sequence and predicted structure with sequence-based approaches using protein language models (PLMs) like ESM-2. In addition to different end-to-end fine-tuning strategies for PLM, we have also investigated the integration of the structural information of the antibodies into the prediction pipeline through graph neural networks (GNN). We applied these different methods for predicting protein aggregation propensity using a dataset of approximately 1200 Immunoglobulin G (IgG1) molecules. Through this empirical evaluation, our study identifies the most effective in silico approach for predicting developability properties for SEC assays, thereby adding insights to existing screening efforts for accelerating the antibody development process.
期刊介绍:
mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.