{"title":"双型深度学习重建单次采集7秒超快速全脑t2加权成像:临床可行性及与常规方法的比较","authors":"Yohei Ikebe, Noriyuki Fujima, Hiroyuki Kameda, Taisuke Harada, Yukie Shimizu, Jihun Kwon, Masami Yoneyama, Kohsuke Kudo","doi":"10.1007/s11604-025-01875-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the image quality and clinical utility of ultra-fast T2-weighted imaging (UF-T2WI), which acquires all slice data in 7 s using a single-shot turbo spin-echo technique combined with dual-type deep learning (DL) reconstruction, incorporating DL-based image denoising and super-resolution processing, by comparing UF-T2WI with conventional T2WI.</p><p><strong>Material and methods: </strong>We analyzed data from 38 patients who underwent both conventional T2WI and UF-T2WI with the dual-type DL-based image reconstruction. Two board-certified radiologists independently performed blinded qualitative assessments of the patients' images obtained with UF-T2WI with DL and conventional T2WI, evaluating the overall image quality, anatomical structure visibility, and levels of noise and artifacts. In cases that included central nervous system diseases, the lesions' delineation was also assessed. The quantitative analysis included measurements of signal-to-noise ratios in white and gray matter and the contrast-to-noise ratio between gray and white matter.</p><p><strong>Results: </strong>Compared to conventional T2WI, UF-T2WI with DL received significantly higher ratings for overall image quality and lower noise and artifact levels (p < 0.001 for both readers). The anatomical visibility was significantly better in UF-T2WI for one reader, with no significant difference for the other reader. The lesion visibility in UF-T2WI was comparable to that in conventional T2WI. Quantitatively, the SNRs and CNRs were all significantly higher in UF-T2WI than conventional T2WI (p < 0.001).</p><p><strong>Conclusion: </strong>The combination of SSTSE with dual-type DL reconstruction allows for the acquisition of clinically acceptable T2WI images in just 7 s. This technique shows strong potential to reduce MRI scan times and improve clinical workflow efficiency.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-fast whole-brain T2-weighted imaging in 7 seconds using dual-type deep learning reconstruction with single-shot acquisition: clinical feasibility and comparison with conventional methods.\",\"authors\":\"Yohei Ikebe, Noriyuki Fujima, Hiroyuki Kameda, Taisuke Harada, Yukie Shimizu, Jihun Kwon, Masami Yoneyama, Kohsuke Kudo\",\"doi\":\"10.1007/s11604-025-01875-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the image quality and clinical utility of ultra-fast T2-weighted imaging (UF-T2WI), which acquires all slice data in 7 s using a single-shot turbo spin-echo technique combined with dual-type deep learning (DL) reconstruction, incorporating DL-based image denoising and super-resolution processing, by comparing UF-T2WI with conventional T2WI.</p><p><strong>Material and methods: </strong>We analyzed data from 38 patients who underwent both conventional T2WI and UF-T2WI with the dual-type DL-based image reconstruction. Two board-certified radiologists independently performed blinded qualitative assessments of the patients' images obtained with UF-T2WI with DL and conventional T2WI, evaluating the overall image quality, anatomical structure visibility, and levels of noise and artifacts. In cases that included central nervous system diseases, the lesions' delineation was also assessed. The quantitative analysis included measurements of signal-to-noise ratios in white and gray matter and the contrast-to-noise ratio between gray and white matter.</p><p><strong>Results: </strong>Compared to conventional T2WI, UF-T2WI with DL received significantly higher ratings for overall image quality and lower noise and artifact levels (p < 0.001 for both readers). The anatomical visibility was significantly better in UF-T2WI for one reader, with no significant difference for the other reader. The lesion visibility in UF-T2WI was comparable to that in conventional T2WI. Quantitatively, the SNRs and CNRs were all significantly higher in UF-T2WI than conventional T2WI (p < 0.001).</p><p><strong>Conclusion: </strong>The combination of SSTSE with dual-type DL reconstruction allows for the acquisition of clinically acceptable T2WI images in just 7 s. This technique shows strong potential to reduce MRI scan times and improve clinical workflow efficiency.</p>\",\"PeriodicalId\":14691,\"journal\":{\"name\":\"Japanese Journal of Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11604-025-01875-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-025-01875-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-fast whole-brain T2-weighted imaging in 7 seconds using dual-type deep learning reconstruction with single-shot acquisition: clinical feasibility and comparison with conventional methods.
Purpose: To evaluate the image quality and clinical utility of ultra-fast T2-weighted imaging (UF-T2WI), which acquires all slice data in 7 s using a single-shot turbo spin-echo technique combined with dual-type deep learning (DL) reconstruction, incorporating DL-based image denoising and super-resolution processing, by comparing UF-T2WI with conventional T2WI.
Material and methods: We analyzed data from 38 patients who underwent both conventional T2WI and UF-T2WI with the dual-type DL-based image reconstruction. Two board-certified radiologists independently performed blinded qualitative assessments of the patients' images obtained with UF-T2WI with DL and conventional T2WI, evaluating the overall image quality, anatomical structure visibility, and levels of noise and artifacts. In cases that included central nervous system diseases, the lesions' delineation was also assessed. The quantitative analysis included measurements of signal-to-noise ratios in white and gray matter and the contrast-to-noise ratio between gray and white matter.
Results: Compared to conventional T2WI, UF-T2WI with DL received significantly higher ratings for overall image quality and lower noise and artifact levels (p < 0.001 for both readers). The anatomical visibility was significantly better in UF-T2WI for one reader, with no significant difference for the other reader. The lesion visibility in UF-T2WI was comparable to that in conventional T2WI. Quantitatively, the SNRs and CNRs were all significantly higher in UF-T2WI than conventional T2WI (p < 0.001).
Conclusion: The combination of SSTSE with dual-type DL reconstruction allows for the acquisition of clinically acceptable T2WI images in just 7 s. This technique shows strong potential to reduce MRI scan times and improve clinical workflow efficiency.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.