Jianqin Li, Yan Yang, Lei Wang, Quanli Liu, Xiaohong Kang, Yun Yang
{"title":"喹唑啉酮衍生物作为潜在的抗肿瘤药物:诱导细胞死亡的结构特征和分子机制(综述)。","authors":"Jianqin Li, Yan Yang, Lei Wang, Quanli Liu, Xiaohong Kang, Yun Yang","doi":"10.3892/ijmm.2025.5646","DOIUrl":null,"url":null,"abstract":"<p><p>The quinazolinone scaffold is widely present in natural compounds and serves as a core structural unit in various alkaloids. Its structural flexibility is a major advantage in anti‑tumor drug development. Characterized by a fused bicyclic system, this scaffold enables precise pharmacological modulation through targeted chemical modifications, allowing the regulation of multiple cell death pathways, including apoptosis, autophagy, ferroptosis, senescence, pyroptosis and necrosis. This review systematically describes the molecular mechanisms by which quinazolinone derivatives induce tumor cell death and critically evaluates their clinical translation potential. In addition, quinazolinone‑based agents approved by the Food and Drug Administration and those in preclinical development as targeted anti‑tumor therapies are summarized, providing new perspectives and methodological frameworks for advancing oncology drug discovery.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 6","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review).\",\"authors\":\"Jianqin Li, Yan Yang, Lei Wang, Quanli Liu, Xiaohong Kang, Yun Yang\",\"doi\":\"10.3892/ijmm.2025.5646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The quinazolinone scaffold is widely present in natural compounds and serves as a core structural unit in various alkaloids. Its structural flexibility is a major advantage in anti‑tumor drug development. Characterized by a fused bicyclic system, this scaffold enables precise pharmacological modulation through targeted chemical modifications, allowing the regulation of multiple cell death pathways, including apoptosis, autophagy, ferroptosis, senescence, pyroptosis and necrosis. This review systematically describes the molecular mechanisms by which quinazolinone derivatives induce tumor cell death and critically evaluates their clinical translation potential. In addition, quinazolinone‑based agents approved by the Food and Drug Administration and those in preclinical development as targeted anti‑tumor therapies are summarized, providing new perspectives and methodological frameworks for advancing oncology drug discovery.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"56 6\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5646\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5646","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review).
The quinazolinone scaffold is widely present in natural compounds and serves as a core structural unit in various alkaloids. Its structural flexibility is a major advantage in anti‑tumor drug development. Characterized by a fused bicyclic system, this scaffold enables precise pharmacological modulation through targeted chemical modifications, allowing the regulation of multiple cell death pathways, including apoptosis, autophagy, ferroptosis, senescence, pyroptosis and necrosis. This review systematically describes the molecular mechanisms by which quinazolinone derivatives induce tumor cell death and critically evaluates their clinical translation potential. In addition, quinazolinone‑based agents approved by the Food and Drug Administration and those in preclinical development as targeted anti‑tumor therapies are summarized, providing new perspectives and methodological frameworks for advancing oncology drug discovery.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.