空间频率自适应调节群体的感受野大小。

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-09-26 DOI:10.7554/eLife.100734
Ecem Altan, Catherine A Morgan, Steven C Dakin, D Samuel Schwarzkopf
{"title":"空间频率自适应调节群体的感受野大小。","authors":"Ecem Altan, Catherine A Morgan, Steven C Dakin, D Samuel Schwarzkopf","doi":"10.7554/eLife.100734","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial tuning of neuronal populations in the early visual cortical regions is related to the spatial frequency (SF) selectivity of neurons. However, there has been no direct investigation into how this relationship is reflected in population receptive field (pRF) sizes despite the common application of pRF mapping in visual neuroscience. We hypothesised that adaptation to high/low SF would decrease the sensitivity of neurons with respectively small/large receptive field sizes, resulting in a change in pRF sizes as measured by functional magnetic resonance imaging (fMRI). To test this hypothesis, we first quantified the SF aftereffect using a psychophysical paradigm where human observers made SF judgments following adaptation to high/low SF noise patterns. We then incorporated the same adaptation technique into a standard pRF mapping procedure to investigate the spatial tuning of the early visual cortex following SF adaptation. Results showed that adaptation to a low/high SF resulted in smaller/larger pRFs, respectively, as hypothesised. Our results provide the most direct evidence to date that the spatial tuning of the visual cortex, as measured by pRF mapping, is related to the SF selectivity of visual neural populations. This has implications for various domains of visual processing, including size perception and visual acuity.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial frequency adaptation modulates population receptive field sizes.\",\"authors\":\"Ecem Altan, Catherine A Morgan, Steven C Dakin, D Samuel Schwarzkopf\",\"doi\":\"10.7554/eLife.100734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spatial tuning of neuronal populations in the early visual cortical regions is related to the spatial frequency (SF) selectivity of neurons. However, there has been no direct investigation into how this relationship is reflected in population receptive field (pRF) sizes despite the common application of pRF mapping in visual neuroscience. We hypothesised that adaptation to high/low SF would decrease the sensitivity of neurons with respectively small/large receptive field sizes, resulting in a change in pRF sizes as measured by functional magnetic resonance imaging (fMRI). To test this hypothesis, we first quantified the SF aftereffect using a psychophysical paradigm where human observers made SF judgments following adaptation to high/low SF noise patterns. We then incorporated the same adaptation technique into a standard pRF mapping procedure to investigate the spatial tuning of the early visual cortex following SF adaptation. Results showed that adaptation to a low/high SF resulted in smaller/larger pRFs, respectively, as hypothesised. Our results provide the most direct evidence to date that the spatial tuning of the visual cortex, as measured by pRF mapping, is related to the SF selectivity of visual neural populations. This has implications for various domains of visual processing, including size perception and visual acuity.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.100734\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.100734","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

早期视觉皮质区神经元群的空间调谐与神经元的空间频率选择性有关。然而,尽管在视觉神经科学中普遍应用了群体感受野(pRF)映射,但尚未对这种关系如何反映在pRF大小上进行直接调查。我们假设,适应高/低SF会降低感受野大小分别为小/大的神经元的敏感性,从而导致功能磁共振成像(fMRI)测量的pRF大小的变化。为了验证这一假设,我们首先使用心理物理范式量化了SF的后效,即人类观察者在适应高/低SF噪声模式后做出SF判断。然后,我们将相同的适应技术纳入标准的pRF映射程序,以研究SF适应后早期视觉皮层的空间调谐。结果表明,适应低/高SF分别导致更小/更大的pRFs。我们的研究结果提供了迄今为止最直接的证据,即视觉皮层的空间调谐(通过pRF映射测量)与视觉神经群的SF选择性有关。这对视觉处理的各个领域都有影响,包括尺寸感知和视觉敏锐度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial frequency adaptation modulates population receptive field sizes.

The spatial tuning of neuronal populations in the early visual cortical regions is related to the spatial frequency (SF) selectivity of neurons. However, there has been no direct investigation into how this relationship is reflected in population receptive field (pRF) sizes despite the common application of pRF mapping in visual neuroscience. We hypothesised that adaptation to high/low SF would decrease the sensitivity of neurons with respectively small/large receptive field sizes, resulting in a change in pRF sizes as measured by functional magnetic resonance imaging (fMRI). To test this hypothesis, we first quantified the SF aftereffect using a psychophysical paradigm where human observers made SF judgments following adaptation to high/low SF noise patterns. We then incorporated the same adaptation technique into a standard pRF mapping procedure to investigate the spatial tuning of the early visual cortex following SF adaptation. Results showed that adaptation to a low/high SF resulted in smaller/larger pRFs, respectively, as hypothesised. Our results provide the most direct evidence to date that the spatial tuning of the visual cortex, as measured by pRF mapping, is related to the SF selectivity of visual neural populations. This has implications for various domains of visual processing, including size perception and visual acuity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信