{"title":"嵌入式神经调节系统神经解码的在线学习框架。","authors":"Yaesop Lee, Rong Chen, Shuvra Bhattacharyya","doi":"10.1177/21580014251374627","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Advancements in brain-computer interfaces (BCIs) have improved real-time neural signal decoding, enabling adaptive closed-loop neuromodulation. These systems dynamically adjust stimulation parameters based on neural biomarkers, enhancing treatment precision and adaptability. However, existing neuromodulation frameworks often depend on high-power computational platforms, limiting their feasibility for portable, real-time applications. <b><i>Methods:</i></b> We propose RONDO (Recursive Online Neural DecOding), a resource-efficient neural decoding framework that employs dynamic updating schemes in online learning with recurrent neural networks (RNNs). RONDO supports simple RNNs, long short-term memory networks, and gated recurrent units, allowing flexible adaptation to different signal type, accuracy, and real-time constraints. <b><i>Results:</i></b> Experimental results show that RONDO's adaptive model updating improves neural decoding accuracy by 35% to 45% compared to offline learning. Additionally, RONDO operates within real-time constraints of neuroimaging devices without requiring cloud-based or high-performance computing. Its dynamic updating scheme ensures high accuracy with minimal updates, improving energy efficiency and robustness in resource-limited settings. <b><i>Conclusions:</i></b> RONDO presents a scalable, adaptive, and energy-efficient solution for real-time closed-loop neuromodulation, eliminating reliance on cloud computing. Its flexibility makes it a promising tool for clinical and research applications, advancing personalized neurostimulation and adaptive BCIs.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Online Learning Framework for Neural Decoding in Embedded Neuromodulation Systems.\",\"authors\":\"Yaesop Lee, Rong Chen, Shuvra Bhattacharyya\",\"doi\":\"10.1177/21580014251374627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Introduction:</i></b> Advancements in brain-computer interfaces (BCIs) have improved real-time neural signal decoding, enabling adaptive closed-loop neuromodulation. These systems dynamically adjust stimulation parameters based on neural biomarkers, enhancing treatment precision and adaptability. However, existing neuromodulation frameworks often depend on high-power computational platforms, limiting their feasibility for portable, real-time applications. <b><i>Methods:</i></b> We propose RONDO (Recursive Online Neural DecOding), a resource-efficient neural decoding framework that employs dynamic updating schemes in online learning with recurrent neural networks (RNNs). RONDO supports simple RNNs, long short-term memory networks, and gated recurrent units, allowing flexible adaptation to different signal type, accuracy, and real-time constraints. <b><i>Results:</i></b> Experimental results show that RONDO's adaptive model updating improves neural decoding accuracy by 35% to 45% compared to offline learning. Additionally, RONDO operates within real-time constraints of neuroimaging devices without requiring cloud-based or high-performance computing. Its dynamic updating scheme ensures high accuracy with minimal updates, improving energy efficiency and robustness in resource-limited settings. <b><i>Conclusions:</i></b> RONDO presents a scalable, adaptive, and energy-efficient solution for real-time closed-loop neuromodulation, eliminating reliance on cloud computing. Its flexibility makes it a promising tool for clinical and research applications, advancing personalized neurostimulation and adaptive BCIs.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/21580014251374627\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21580014251374627","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
An Online Learning Framework for Neural Decoding in Embedded Neuromodulation Systems.
Introduction: Advancements in brain-computer interfaces (BCIs) have improved real-time neural signal decoding, enabling adaptive closed-loop neuromodulation. These systems dynamically adjust stimulation parameters based on neural biomarkers, enhancing treatment precision and adaptability. However, existing neuromodulation frameworks often depend on high-power computational platforms, limiting their feasibility for portable, real-time applications. Methods: We propose RONDO (Recursive Online Neural DecOding), a resource-efficient neural decoding framework that employs dynamic updating schemes in online learning with recurrent neural networks (RNNs). RONDO supports simple RNNs, long short-term memory networks, and gated recurrent units, allowing flexible adaptation to different signal type, accuracy, and real-time constraints. Results: Experimental results show that RONDO's adaptive model updating improves neural decoding accuracy by 35% to 45% compared to offline learning. Additionally, RONDO operates within real-time constraints of neuroimaging devices without requiring cloud-based or high-performance computing. Its dynamic updating scheme ensures high accuracy with minimal updates, improving energy efficiency and robustness in resource-limited settings. Conclusions: RONDO presents a scalable, adaptive, and energy-efficient solution for real-time closed-loop neuromodulation, eliminating reliance on cloud computing. Its flexibility makes it a promising tool for clinical and research applications, advancing personalized neurostimulation and adaptive BCIs.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.