Carmelo Cerra, Madeleine R C Tancock, Niko Thio, Ada Koo, AnnRann Wong, Karla J Cowley, Swati Varshney, Madelynne O Willis, Kaylene J Simpson, David D L Bowtell, Elaine Sanij, Elizabeth L Christie, Richard B Pearson, Jian Kang, Keefe T Chan
{"title":"利用失调的铁稳态根除持续性高级别浆液性卵巢癌。","authors":"Carmelo Cerra, Madeleine R C Tancock, Niko Thio, Ada Koo, AnnRann Wong, Karla J Cowley, Swati Varshney, Madelynne O Willis, Kaylene J Simpson, David D L Bowtell, Elaine Sanij, Elizabeth L Christie, Richard B Pearson, Jian Kang, Keefe T Chan","doi":"10.1038/s41420-025-02716-1","DOIUrl":null,"url":null,"abstract":"<p><p>Treatments for high-grade serous ovarian cancer (HGSOC) are initially effective but most invariably fail. Although they can successfully suppress the bulk of the tumour cell population, residual cancer cells can enter alternative therapy-resistant cell fates highlighted by proliferative arrest. Understanding the nature of these fates and how cells may resume uncontrolled proliferation will lead to the development of new treatments for HGSOC. In this study, we examine the response of HGSOC cells to standard of care cisplatin chemotherapy and to the RNA Polymerase I transcription inhibitor CX-5461/Pidnarulex, two drugs that elicit a potent DNA damage response and growth arrest. Here, we identify that HGSOC cells exposed to these therapies show multiple hallmarks of therapy-induced senescence (TIS) and derive a core TIS gene expression signature irrespective of genetic background or senescence trigger. Given that TIS is a potentially escapable state, we have performed a focussed drug screen to identify drugs that eradicate senescent HGSOC cells. We identify that therapy-induced senescent HGSOC cells, including those with decreased sensitivity to senolytic drugs that inhibit the pro-survival protein BCL-XL, can be eliminated using drugs that induce ferroptosis, an iron-dependent form of cell death. Mechanistically, we demonstrate that senescent HGSOC cells have altered expression of regulators of iron metabolism leading to intracellular iron overload that underpins this targetable vulnerability. Together, we highlight elevated levels of iron as a TIS biomarker in HGSOC and the potential of inducing ferroptosis to eradicate residual HGSOC cells following initial therapy.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"423"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462457/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploiting dysregulated iron homeostasis to eradicate persistent high-grade serous ovarian cancer.\",\"authors\":\"Carmelo Cerra, Madeleine R C Tancock, Niko Thio, Ada Koo, AnnRann Wong, Karla J Cowley, Swati Varshney, Madelynne O Willis, Kaylene J Simpson, David D L Bowtell, Elaine Sanij, Elizabeth L Christie, Richard B Pearson, Jian Kang, Keefe T Chan\",\"doi\":\"10.1038/s41420-025-02716-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatments for high-grade serous ovarian cancer (HGSOC) are initially effective but most invariably fail. Although they can successfully suppress the bulk of the tumour cell population, residual cancer cells can enter alternative therapy-resistant cell fates highlighted by proliferative arrest. Understanding the nature of these fates and how cells may resume uncontrolled proliferation will lead to the development of new treatments for HGSOC. In this study, we examine the response of HGSOC cells to standard of care cisplatin chemotherapy and to the RNA Polymerase I transcription inhibitor CX-5461/Pidnarulex, two drugs that elicit a potent DNA damage response and growth arrest. Here, we identify that HGSOC cells exposed to these therapies show multiple hallmarks of therapy-induced senescence (TIS) and derive a core TIS gene expression signature irrespective of genetic background or senescence trigger. Given that TIS is a potentially escapable state, we have performed a focussed drug screen to identify drugs that eradicate senescent HGSOC cells. We identify that therapy-induced senescent HGSOC cells, including those with decreased sensitivity to senolytic drugs that inhibit the pro-survival protein BCL-XL, can be eliminated using drugs that induce ferroptosis, an iron-dependent form of cell death. Mechanistically, we demonstrate that senescent HGSOC cells have altered expression of regulators of iron metabolism leading to intracellular iron overload that underpins this targetable vulnerability. Together, we highlight elevated levels of iron as a TIS biomarker in HGSOC and the potential of inducing ferroptosis to eradicate residual HGSOC cells following initial therapy.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"423\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462457/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02716-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02716-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exploiting dysregulated iron homeostasis to eradicate persistent high-grade serous ovarian cancer.
Treatments for high-grade serous ovarian cancer (HGSOC) are initially effective but most invariably fail. Although they can successfully suppress the bulk of the tumour cell population, residual cancer cells can enter alternative therapy-resistant cell fates highlighted by proliferative arrest. Understanding the nature of these fates and how cells may resume uncontrolled proliferation will lead to the development of new treatments for HGSOC. In this study, we examine the response of HGSOC cells to standard of care cisplatin chemotherapy and to the RNA Polymerase I transcription inhibitor CX-5461/Pidnarulex, two drugs that elicit a potent DNA damage response and growth arrest. Here, we identify that HGSOC cells exposed to these therapies show multiple hallmarks of therapy-induced senescence (TIS) and derive a core TIS gene expression signature irrespective of genetic background or senescence trigger. Given that TIS is a potentially escapable state, we have performed a focussed drug screen to identify drugs that eradicate senescent HGSOC cells. We identify that therapy-induced senescent HGSOC cells, including those with decreased sensitivity to senolytic drugs that inhibit the pro-survival protein BCL-XL, can be eliminated using drugs that induce ferroptosis, an iron-dependent form of cell death. Mechanistically, we demonstrate that senescent HGSOC cells have altered expression of regulators of iron metabolism leading to intracellular iron overload that underpins this targetable vulnerability. Together, we highlight elevated levels of iron as a TIS biomarker in HGSOC and the potential of inducing ferroptosis to eradicate residual HGSOC cells following initial therapy.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.