吸入纳米塑料引发的肺细胞线粒体应激反应。

IF 6.9 2区 医学 Q1 TOXICOLOGY
Beata Siemiątkowska, Joanna Szczepanowska
{"title":"吸入纳米塑料引发的肺细胞线粒体应激反应。","authors":"Beata Siemiątkowska, Joanna Szczepanowska","doi":"10.1007/s00204-025-04194-x","DOIUrl":null,"url":null,"abstract":"<p><p>The lungs are the primary site of exposure to environmental stressors, making them particularly vulnerable to the effects of inhaled nanoplastic particles. Owing to their nanoscale size, nanoplastics penetrate deeper into the respiratory tract than microplastics do and are capable of interacting directly with alveolar cells. This review focuses on the impact of inhaling nanoplastic particles on mitochondrial function in lung tissue, particularly the activation of mitochondrial stress response pathways. Mitochondria, as central regulators of cellular energy and stress responses, exhibit heightened sensitivity to environmental stress. Many studies have shown that nanoplastic exposure disrupts mitochondrial functions, reduces the membrane potential, and induces oxidative stress, possibly causing inflammation and apoptosis. This review underscores the need for advanced research to understand the systemic effects of nanoplastics and their compounded toxicity when combined with other environmental pollutants. Studying the adaptive processes of mitochondria exposed to the stress of inhaled nanoplastics is particularly important because mitochondria are essential for life-supporting functions and cell fate decisions. Given that mitochondria are key cellular targets, studying their behavior may prove useful in finding strategies to reduce the health risks posed by nanoplastic inhalation.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial stress response in lung cells triggered by the inhaled nanoplastics.\",\"authors\":\"Beata Siemiątkowska, Joanna Szczepanowska\",\"doi\":\"10.1007/s00204-025-04194-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lungs are the primary site of exposure to environmental stressors, making them particularly vulnerable to the effects of inhaled nanoplastic particles. Owing to their nanoscale size, nanoplastics penetrate deeper into the respiratory tract than microplastics do and are capable of interacting directly with alveolar cells. This review focuses on the impact of inhaling nanoplastic particles on mitochondrial function in lung tissue, particularly the activation of mitochondrial stress response pathways. Mitochondria, as central regulators of cellular energy and stress responses, exhibit heightened sensitivity to environmental stress. Many studies have shown that nanoplastic exposure disrupts mitochondrial functions, reduces the membrane potential, and induces oxidative stress, possibly causing inflammation and apoptosis. This review underscores the need for advanced research to understand the systemic effects of nanoplastics and their compounded toxicity when combined with other environmental pollutants. Studying the adaptive processes of mitochondria exposed to the stress of inhaled nanoplastics is particularly important because mitochondria are essential for life-supporting functions and cell fate decisions. Given that mitochondria are key cellular targets, studying their behavior may prove useful in finding strategies to reduce the health risks posed by nanoplastic inhalation.</p>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00204-025-04194-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-04194-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肺部是暴露于环境压力源的主要部位,使其特别容易受到吸入纳米塑料颗粒的影响。由于其纳米级的尺寸,纳米塑料比微塑料能更深入地渗透到呼吸道,并且能够直接与肺泡细胞相互作用。本文综述了吸入纳米塑料颗粒对肺组织线粒体功能的影响,特别是线粒体应激反应途径的激活。线粒体作为细胞能量和应激反应的中枢调节因子,对环境应激表现出高度的敏感性。许多研究表明,纳米塑料暴露会破坏线粒体功能,降低膜电位,诱导氧化应激,可能导致炎症和细胞凋亡。这一综述强调了深入研究纳米塑料的系统效应及其与其他环境污染物结合时的复合毒性的必要性。研究线粒体在吸入纳米塑料胁迫下的适应过程尤为重要,因为线粒体对维持生命的功能和决定细胞命运至关重要。鉴于线粒体是关键的细胞靶标,研究它们的行为可能有助于找到减少纳米塑料吸入带来的健康风险的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitochondrial stress response in lung cells triggered by the inhaled nanoplastics.

The lungs are the primary site of exposure to environmental stressors, making them particularly vulnerable to the effects of inhaled nanoplastic particles. Owing to their nanoscale size, nanoplastics penetrate deeper into the respiratory tract than microplastics do and are capable of interacting directly with alveolar cells. This review focuses on the impact of inhaling nanoplastic particles on mitochondrial function in lung tissue, particularly the activation of mitochondrial stress response pathways. Mitochondria, as central regulators of cellular energy and stress responses, exhibit heightened sensitivity to environmental stress. Many studies have shown that nanoplastic exposure disrupts mitochondrial functions, reduces the membrane potential, and induces oxidative stress, possibly causing inflammation and apoptosis. This review underscores the need for advanced research to understand the systemic effects of nanoplastics and their compounded toxicity when combined with other environmental pollutants. Studying the adaptive processes of mitochondria exposed to the stress of inhaled nanoplastics is particularly important because mitochondria are essential for life-supporting functions and cell fate decisions. Given that mitochondria are key cellular targets, studying their behavior may prove useful in finding strategies to reduce the health risks posed by nanoplastic inhalation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信