利用液体微结表面采样探针快速筛选和优选天然产物发现的培养条件。

IF 2.7 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Jessie F Deng, Jennifer L Kolwich, Georgia Reed, Rachel L Theriault, Haidy Metwally, Lainey Ennett, Chang Liu, Randy E Ellis, Avena C Ross, Richard D Oleschuk
{"title":"利用液体微结表面采样探针快速筛选和优选天然产物发现的培养条件。","authors":"Jessie F Deng, Jennifer L Kolwich, Georgia Reed, Rachel L Theriault, Haidy Metwally, Lainey Ennett, Chang Liu, Randy E Ellis, Avena C Ross, Richard D Oleschuk","doi":"10.1021/jasms.5c00193","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of novel bioactive compounds remains a cornerstone of natural product (NP) chemistry. However, traditional NP discovery workflows are time- and resource-intensive, hindering sustainability and efficiency of multicondition screening projects. This study evaluates the application of the liquid microjunction surface sampling probe (LMJ-SSP) with partial least-squares discriminant analysis (PLS-DA) as a preliminary step in the NP discovery pipeline. By integrating ambient mass spectrometry with machine learning, we analyzed four strains of <i>Penicillium</i> fungi grown under 13 unique conditions <i>in situ,</i> without sample preparation. Using PLS-DA, we prioritized the growth conditions that maximized chemical diversity, offering insights into metabolite composition prior to resource-intensive steps in the NP discovery workflow. This LMJ-SSP-based approach achieved a significant reduction in sampling time (96%), overall cost (98%), and solvent consumption (98%)─streamlining the NP discovery pipeline through chemically informed prioritization and improved sustainability.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Screening and Prioritization of Culture Conditions for Natural Product Discovery using the Liquid Microjunction Surface Sampling Probe.\",\"authors\":\"Jessie F Deng, Jennifer L Kolwich, Georgia Reed, Rachel L Theriault, Haidy Metwally, Lainey Ennett, Chang Liu, Randy E Ellis, Avena C Ross, Richard D Oleschuk\",\"doi\":\"10.1021/jasms.5c00193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discovery of novel bioactive compounds remains a cornerstone of natural product (NP) chemistry. However, traditional NP discovery workflows are time- and resource-intensive, hindering sustainability and efficiency of multicondition screening projects. This study evaluates the application of the liquid microjunction surface sampling probe (LMJ-SSP) with partial least-squares discriminant analysis (PLS-DA) as a preliminary step in the NP discovery pipeline. By integrating ambient mass spectrometry with machine learning, we analyzed four strains of <i>Penicillium</i> fungi grown under 13 unique conditions <i>in situ,</i> without sample preparation. Using PLS-DA, we prioritized the growth conditions that maximized chemical diversity, offering insights into metabolite composition prior to resource-intensive steps in the NP discovery workflow. This LMJ-SSP-based approach achieved a significant reduction in sampling time (96%), overall cost (98%), and solvent consumption (98%)─streamlining the NP discovery pipeline through chemically informed prioritization and improved sustainability.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.5c00193\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.5c00193","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

新的生物活性化合物的发现仍然是天然产物(NP)化学的基石。然而,传统的NP发现工作流程是时间和资源密集型的,阻碍了多条件筛选项目的可持续性和效率。本研究评估了液体微结表面采样探针(LMJ-SSP)与偏最小二乘判别分析(PLS-DA)的应用,作为NP发现管道的初步步骤。通过将环境质谱法与机器学习相结合,我们分析了在13种不同条件下原位生长的4株青霉菌,而无需制备样品。使用PLS-DA,我们优先考虑最大化化学多样性的生长条件,在NP发现工作流程中的资源密集型步骤之前,提供对代谢物组成的见解。这种基于lmj - ssp的方法显著减少了采样时间(96%)、总成本(98%)和溶剂消耗(98%)──通过化学信息优先级和提高可持续性,简化了NP发现管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid Screening and Prioritization of Culture Conditions for Natural Product Discovery using the Liquid Microjunction Surface Sampling Probe.

The discovery of novel bioactive compounds remains a cornerstone of natural product (NP) chemistry. However, traditional NP discovery workflows are time- and resource-intensive, hindering sustainability and efficiency of multicondition screening projects. This study evaluates the application of the liquid microjunction surface sampling probe (LMJ-SSP) with partial least-squares discriminant analysis (PLS-DA) as a preliminary step in the NP discovery pipeline. By integrating ambient mass spectrometry with machine learning, we analyzed four strains of Penicillium fungi grown under 13 unique conditions in situ, without sample preparation. Using PLS-DA, we prioritized the growth conditions that maximized chemical diversity, offering insights into metabolite composition prior to resource-intensive steps in the NP discovery workflow. This LMJ-SSP-based approach achieved a significant reduction in sampling time (96%), overall cost (98%), and solvent consumption (98%)─streamlining the NP discovery pipeline through chemically informed prioritization and improved sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信